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James D. Cawley

Ohio State University
Department of Materials Science and Engineering

2041 College Road
Columbus OH 43210-1178

ABSTRACT

This is the final report for NASA Grant NAG3-755 entitled "Powder Agglomeration in a

Microgravity Environment." The research program included both two types of

numerical models and two types of experiments. The numerical modeling included the
use of Monte Carlo type simulations of agglomerate growth including hydrodynamic

screening and molecular dynamics type simulations of the rearrangement of particles

within an agglomerate under a gravitational field. Experiments included direct

observation of the agglomeration of submicron alumina and indirect observation,

using small angle light scattering, of the agglomeration of colloidal silica and

aluminum monohydroxide. In the former class of experiments, the powders were
constrained to move on a two-dimensional surface oriented to minimize the effect of

gravity. In the latter, some experiments involved mixture of suspensions containing

particles of opposite charge which resulted in agglomeration on a very short time scale

relative to settling under gravity.





INTRODUCTION

The subject of the research program supported by this grant was powder
agglomeration. The behavior of powder suspensions is one aspect of ceramic

processing which is strongly influenced by gravity. In particular there is a strong
coupling between agglomeration and settling under gravity. The extent of settling is

determined by the competition between diffusion (Brownian motion) and convection

due to gravity (Stoke's settling). The flux of particles towards, j (#/m2-s) the bottom of

the container may be written as

j = -D o_c/ax +vc (1)

where D is the translational Brownian diffusion coefficient (m2/s), c is the concentration

of particles (#/rn3), x is position measured relative to the upper surface of the

suspension (m), and v is the Stoke's settling velocity (m/s). At steady state the
concentration of particles as a function of position for a suspension containing M

particles per m 3 in a container of height h (m) is given by
c = B exp(vx/D) (2)

where B is a constant which depends on the experimental conditions and may be
written

B = vM/[DA(exp(vh/D)-l)] (3).
It is readily seen by inspection that the degree of segregation of particles is determined

by the ratio of v/D. For very small values of v/E), Eqn. 3 yields B=M/A and Eqn. 2 yields

c=B. Therefore the value of c becomes independent of position and equal to the
original concentration, i.e. no segregation occurs. On the contrary, as the ratio v/D

becomes increasingly larger more of the particles tend to collect near the bottom of the
container.

Since Stoke's velocity can be written

v = B' r2 (4)

where r is the hydrodynamic radius of the particle and B' is a constant given by

B' = (ps-Pl)g/(18_1) (5)

where Ps and Pi are the densities of the solid and liquid respectively (kg/m3), g is the

gravitational constant (9.8 m/s 2) and 11 is the viscosity of the liquid 0. The Brownian
motion diffusion coefficient can be written

D = B"/r (6)

where B", another constant is given by

B" = kT/(8,-[_) (7)

where kT is the product of Boltzmann's constant 0 and absolute temperature (K). It is

evident for the the ratio of Eqn. 4 to 5

v/D = (B'/B") r (8)

that the tendency for particle segregation decreases with decreasing particle size. A

suspension consisting of dispersed and very finely divided particles will tend to be

very homogeneous and only weakly affected by gravity. A system undergoing

agglomeration, however, loses this stability.
The process of agglomeration is the accretion of particles into increasingly

larger flow units. As long as the applied shear field field is kept low, these behave as



"particles" with an effective density which is intermediate between that of the fluid an

the solid and a large hydrodynamic radius. The former tends to decrease the

magnitude of B", but the effect is slight and the ratio v/D tends to increase in a nearly

linear fashion as r increases. The consequence is that inducing agglomeration results

in very rapid settling. This generally regarded as a technical problem in the processing

of ceramics. Indeed it also hampers the scientific investigation of an agglomeration
process(es).

Recently there has been revived interest in understanding the processes which

are important in the aggregation of colloids. This is driven by a combination of
scientific and technical achievements. Firstly, the production of colloidal ceramic

powders has been greatly developed. Very fine powders are now routinely produced
using such methods as precipitation, aerosol decomposition, sol-gel, and flame

spraying. Controlling the colloidal stability of these powders requires an increased

understanding of the important forces on the particles. Secondly, the technical tools

which are currently available (small angle light scattering, small angle x-ray scattering,
and advanced electron microscopy) provide information about the structure of

aggregates which was previously very difficult to obtain. This, coupled with the now

popular fractal description of irregular structures, has allow a more rigorous

comparison between model and experiment. Lastly, the widespread availability of

powerful computational facilities has allowed numerical models to be developed
which are much more sophisticated.

The research program funded under NASA grant NAG3-755 addressed

involved the development of both numerical models and two qualitatively different

experimental approaches. Research personnel fully or partially supported were: J. D.
Cawley, P.I.; J. F. Dirkse; J. L. LaRosa, K. Langguth, J. Marra and Y. H. Rim. Both K.

Langguth and J. Marra left the University after a relatively short time; neither received a

degree. Both J. F. Dirkse and J. L. LaRosa successfully completed M.S. degree
programs.Copies of their respective theses have been supplied to the grant monitor,

Dennis Fox (NASA Lewis). Dr. Y. H. Rim was a post-doctoral researcher who was

partially supported by this grant during his 1 114 year stay at Ohio State University.

J. L. LaRosa's research program focussed on the development of a method for

directly observing the agglomeration of 0.4 _m aluminum oxide particles using optical
microscopy. Two important aspects of this work were that this experiment allowed a

critical test of the assumptions employed in subsequent, as well as prior, numerical

models and it also provided an excellent set of data to test the appropriateness of

using fractal geometry to describe the aggregate of commercial ceramic powders. The

experiments of both Langguth and Marra contributed to the development of the
experimental procedure employed by LaRosa.

J. F. Dirske's thesis research focussed on the development of numerical models

for simulating the aggregation process. Two standard approaches were pursued; the

Monte Carlo method and "Molecular" Dynamics. In the latter method particles, rather

than molecules were the basic flow units, however it would be inappropriate to refer to
our approach as Brownian Dynamics since we modeled the case in which convection

(due to, for example, gravity) dominates the process. Two different processes were

investigated in detail. These were agglomeration during settling and rearrangement of
particles in contact with a container wall and under a strong gravitational field.



The research of Y. H. Rim was a collaborative program, carried out with R.

Ansari and W. V. Meyer of NASA Lewis, and directed at the use of light scattering to

measure the characteristics of very finely divided colloidal suspensions during the

agglomeration process. In the experiments, agglomeration was induced by one of two

methods. In one set of experiments the pH of the suspension was adjusted such that

the particles were uncharged and agglomeration results from short range van der
Waals forces. In the other type of experiment two suspensions were mixed; one

containing positively charged particles and the other containing negatively charged
particles. Since the suspensions were maintained at low ionic strength, agglomeration

resulted from long range electrostatic forces. Thus, these experiments correspond to

physical realizations of the two limiting cases of computer models; purely diffusive and

purely convective.



The seven reprints of research fully or partially supported under this grant are
presented in chronological order:

J. D. Cawley, "Two Dimensional Agglomeration of AI203," pp. 52-54 in Materials

Research Society EA-13, Fractal AsDects of Materials: Disordered Svstem_, Edited by
A. J. Hurd, D. A. Weitz, and B. B. Mandelbrot, 1987.

J. D. Cawley, "Two Dimensional Agglomeration of Ceramic Powders," pp. 155-157 in

Materials Research Society EA-17, Fractal AsDects of Materials: Disordered Systems,
Edited by D. A. Weitz, L. M. Sander, and B. B. Mandelbrot, 1988.

J. D. Cawley, J. LaRosa, and J. F. Dirkse, "Agglomeration of Ceramic Powders,"pp.

185-197 in LLS/ATD 1988 Worksho0 Proceedinq._, Edited by W. V Meyer, NASA
Conference Publication 10033, 1989,.

Y. H. Rim, J. D. Cawley, W. V. Meyer, and R. Ansari, "ln-Situ Light Scattering Study of

Agglomeration," pp. 54-65 in Ceramic Transactions vol. 26: Formina SciencQ _,nd

Technoloav. Edited by M. Cima, American Ceramic Society, Columbus OH (1992)

J. L. LaRosa and J. D. Cawley, "Fractal Dimension of Alumina Aggregates Grown in

Two Dimensions," Journal of the American Ceramic Society, 75 [7] 1-6 (1992).

J. F. Dirkse and J. D. Cawley, "A Modified Ballistic Aggregation Process," submitted to
the Journal of Colloid and Interface Science.

J. F. Dirkse and J. D. Cawley, "Numerical Simulation of Particle Rearrangement Within
an Agglomerate During Settling Under Gravity," submitted to the Journal of the
American Ceramic Society.
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TWO DIMENSIONAL AGGLOMERATION OF AI,.zO;]

J. D. CAWLEY

Department of Ceramic Engineering, Ohio State University, 2041 College Road,
Columbus OH, 43210

INTRODUCTION

In many situations particle agglomeration takes place within environments that
experience substantial convection, e.g. thermophoretic deposition, stirred colloidal
suspensions, and smoke formation. It is therefore of interest to understand the role of

convection in determining the collision probability between particles and clusters of
particles. The examination of real time video taped movies of the agglomeration of
AI203 particles constrained to two dimensions suggests that the situation is more

complicated than a simple random rain model.
The video tapes also provide information on rearrangement processes during

agglomerate growth.

EXPERIMENTAL PROCEDURE

Oo

Low volume fraction, between 0.01 and 0.03%, suspensions of either 0.4 or 4.0 I.Lm
AI203 particles were prepared. Drops of these suspensions were placed in a hole on

an aluminum microscope slide and observed using a inverted optical microscope
focused on the lower side of the droplet. Due to the low volume fraction, the particles
had a very low collision probability in the bulk and settled to the surface almost entirely
as singlets. In several experiments the air striking the fluid surface produced a particle
drift and allowed the effect of convection on the agglomeration process to be observed.

RESULTS

The agglomerates observed for 0.4 I.tm AI203 at a pH~8 (the pzc for A1203) bear a

strong resemblance to computer generated agglomerates using the cluster-cluster
aggregation model, as is apparent is this image digitized from a video tape.
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The effect of convection is seen in the deposition of small agglomerates, 10 - 25

particles, onto a large immobile agglomerate of several thousand particles. The
sketchs below are tracings of digitized images from a video tape where the

microscope was focused on the tip of a dendrite extending nearly to the center of the

drop. The arrows indicate the direction of particle drift in the free stream to the left of

the observed area. The time interval between images 1-3 is roughly 12 seconds, and

between images 3-6 is 20 seconds.
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The area on the right in the images is a 'bay' along the edge of the

large immobile agglomerate. The fluid flow in this region is impeded by

the dendrite arm along the top of the images which acts as a 'reef'. The

sequence 1-3 shows the motion of an agglomerate of roughly 25

particles. The agglomerate attempts to follow motion of the fluid around

the tip of the dendrite. However it is sufficiently massive that it strikes

the dendrite near the tip and becomes attached. Note that it continues to
move via rotation until it becomes attached it two locations. The

sequence 4-6 shows that less massive agglomerates, less than 10

particles, are able to follow the fluid around the tip. These sequences

suggest that:

a) the magnitude of convection is dependent on the local geometry

(single particles deep within the bay display only Brownian motion while

those near the surface show significant drift);

b) the role of convective transport varies for different sized
agglomerates and is probably more important for cluster-cluster

aggregation;

c) it appears that convection can lead to preferential growth near

the tips of dendrites, thus convectively driven agglomeration may give
rise to mass fractals.

Observations on restructuring indicate that:

a) restructuring occurs through deformation of dendrite arms

rather than single particle dettachment and re-attachment;

b) restructuring is more prevalent with 4.0 p.m particles than with

0.4 p.m particles, it appears that the van der Waals attraction between

adjacent dendrites of 4.0 p.m particles can induce collapse;

c) preliminarY results suggest that restructuring may be sensitive
to pH.

The use of Brownian dynamics calculations to model a mixed

convection/diffusion system is being investigated.





Two Dimensional Agglomeration of Ceramic Powders

J. D. Cawiey, Department of Ceramic Engineering, 2041 College Road, Columbus OH 43210

INTRODUCTION: DLA simulations have been used to study the competitive growth of clusters on a two
dimensional surface. A region of a square lattice is defined (typically a square or circle region) and a
given number of the sites are populated and considered fixed. A single mobile particle is allowed to

randomly occupy any unoccupied site. This particle is allowed to execute an off lattice random walk
until its center is within a lattice site adjacent to an occupied site. At this point it is fixed and a further
mobile particle is introduced. This model contains many of the essential attributes of the agglomeration
of particles in a two dimensional experiment in which particles settle to, and are mobile on, the lower
surface of a dilute suspension [1]. It may also represent the growth of thin film on the surface of a
substrata by condensation from a vapor.

EXPERIMENTS: Three types of simulations were performed. In the first a 200x2C0 square lattice was
initially populated with 10 fixed particles. The top and bottom of the square were subjected to periodic
boundary conditions, while the left and right were treated as impermeable surfaces, but did not trap
random walkers. Random walkers were randomly added and clusters were allowed to grow until a left to
right percolation path was created. The results of this experiment is shown in figure 1. In the initial phase
of the experiment lacy clusters (that have a visual appearance consistent with fractals) form and grow

such that they tend to fill the tessellation. As they approach one another they tend to density rather that
link together. This is a direct consequence of the fact that the random walker has a higher probability of
entering the system in between adjacent dendrite arms on a single cluster than in the small area left
between neighboring clusters. When percolation does occur the filled fraction of the lattice is
_:= 18,344/4_3,O30 - 0.4586 in strik3ng agreement with the value of 0.45 for percolation in 2-D by

random population of sites[2].
The second experiment was designed to test whether the clusters which grow in this

competitive situation are indeed fractal. This experiment involved seeding the center of a circular region
in a square lattice wP,.ha single particle and introducing random walkers at random within the circle. To
make the circular region equivalent to the cell surrounding each agglomerate in the first experiment the

boundary was treated as impermeable. Four stages of growth are illustrated in figure 2, along with a
standard log-log plot of number versus radius of the sampling interval. The cluster is clearly not fractal.

The amount of mass near the periphery is substantially in excess of the expectation for a fractal. This is
manifest as a bump in the log-log plot between values of 4 and 4.5 on the horizontal axis. It is interesting

to note that clusters occurring when sputter depositing films of Nd3Ge onto a quartz substrata show

precisely the same deviation from fractal behavior[3]. This results from the geometric situation that the
most probable location for the random walker to be introduced (or the most area available for a sputtered

atom to be adsorbed) is the large openings between the dendrite tips. The magnitude of the
discrepancy decreases as the cell fills, finally converging to a straight line with a slope of 2 upon
complete filling.

The third experiment was a simple simulation on a L:_Ox200square laffice identical to the first
except one edge was completely seeded and a single seed placed in the center with respect to the
horizontal axis and 50 laffices away from the seeded edge. The left and right boundaries are periodic
and the bottom is impermeable, The result, Ulustrated in figure 3, presents another manifestation of the
consequence of competitive growth. The isolated cluster grow away from the seeded edge and its
presence inhibits effectively screens the center of the seeded edge. The result of this is that the growth
from the wall begins to surround the isolated cluster and a clearly defined region devoid of particles

prevents them from linking together. This is commonly observed in the formation of frost (condensed
from the air) on a window pane (a substrate) as illustrated in figure 3 b.

CONCLUSIONS: Competitive growth of DLA clusters give rise to nonfractal structures and can explain

the development of some patterns in the formation of thin films on substrates.

REFERENCES
1. J. O. Cawley, "Two Dimensional Agglcmerationot Alumina,"MRS Extended Abstracts,Fractal Aspec_ of

Ma_rials: DisorderedSystems,A. J. Hurd, O. A. Waltz, B. B. Mandelbrot,E_s., lg87.
2. R. Zallen, The Physicsof AmorphousSolids,(JohnWileyand Sons, 1983) p. 191.
3. S. A. Wolf, W. T. Eiarn,J. Sprauge, O. U. Gubster,O. van Vecl_ten,and P. Meakin, *SputterDepositedFractal

Aggregates,"MRS Extended Abstracts,FractalAspec_ ot Materials: Metal and Catalyst Surfaces, Pcwclers
and Aggregates,B. B. Mandelbrotand D. E. Passoja,Eds. 1984.

4. W. A. B_ntle,/and W. J. Humphreys,Snow Crystals,(OoverPul_lications,Inc, 1962)0p.218.
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Figure I. a) Initial distribution of fixed
particles in a 200x2(X3 lattice with a Oirichlet
Tessellation, b) Cluster population after
adding 5,(XX) particles, c) after 10,000. d)

after 15,000 and e) at percolation with a total
of 18,344 particles.
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Figure 2. DLA agglomerates grown in a circular region bounded by an impermeable surface. The four

illustrations represent clusters of: 5,0(30; 10,000; 15,000;, and 20,000, respectively. The curves

represent data taken on agglomerates of: 5,000; 15,000; 25,000; 35,000; 45,000 particles. Best fits to

the first four data points on each data set produced the straight lines on the figures and apparent fractal

dimensions appear as the coefficients on x in the upper left hand corner.

-.w-

Figure 3. a) DLA cluster growth with a

seeded edge and a single isolated seed

after 5000 particles, b) after 10,000 panicles

and c) after 15,000 particles compared to a

photograph of frost on a window pane taken
from reference 4.
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AGGLOMERATION OF CERAMIC POWDERS

James D. Cawley, Judith LaRosa, and Fredrick Dirkse
Department of Ceramic Engineering

The Ohio State University
Columbus, Ohio

A research program directed at a critical comparison of numerical
models for powder agglomeration with experimental observations is
currently underway. Central to this program is the quantitative

characterization of the distribution of mass within an agglomerate as a
function of time. Current experiments are designed to restrict
agglomeration to a surface, which is oriented perpendicular to the
force of gravity. These experiments are discussed with reference to:
their significance to ceramic processing; artifacts which may be
avoided in microgravity experiments; and the comparison of
information available in real space (from optical microscopy) to that in
reciprocal space (from light scattering). The principal machine
requirement appears to be a need to obtain information at small

scattering angles.

Introduction

In general, ceramic processing is a powder technology in which powders are
manufactured, formed into a compact, and consolidated through heat treatment.
Although the final piece may have the same chemical composition as the staRting
powders, it is often the case that a mechanical mixture of different powders is used
which undergo a desired chemical reaction during the heat treatment.

Control of the state of agglomeration is important for technological reasons[I].
Agglomerates are necessary for many conventional forming operations such as dry
pressing, slip casting, and plastic forming. However, the residual porosity in a fired
ceramic, which can strongly affect the optical, thermal, and mechanical propeRties of
the material, is an artifact of the porosity in the green body. This is intimately related to

the packing of the primary partic.Jeswithin the agglomerate and the packing of the
agglomerates to form the compact. Frequently, it is desired to crush agglomerates in

the latter stages of powder compaction in order to achieve high packing densities.
Clearly, the control of the agglomerate population is an important process control
variable, and successful control implies the ability to quantify agglomerate
characteristics in a meaningful way.

185
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It has long been realized that a quantitative characterization of the agglomerate
geometry is iml:,0rtant to a complete understanding of colloidal suspensions. For
example, Michaels and Bolger[2] quantitatively characterize agglomerate structure

through a term C=p which is the reciprocal of the solids packing density within the

agglomerate. Firth[3] and Firth and Hunter[4] have shown C=p to be an important

parameter in describing the rheology of agglomerated colloidal suspensions.

Beginning with the seminal work of Forrest and Witten[5] on the structure of
agglomerates of metallic smoke particles, it has been realized that many
agglomerates are fractals. In a fractal agglomerate, the average packing density of the
agglomerate decreases as it grows, so that within an agglomerate, the density is a
maximum at the center of the agglomerate and drops off as a power law when
increasingly larger volumes are considered, i.e. for a three dimensional system,

P = 1_• r(o'3) Eqn-1

where p is the density of solids within a sphere of radius r around the agglomerate's

center of mass, _ is a geometrical constant, and D is defined as the fractal dimension.

A significant feature of fractal growth is that both 1_and D are constants which do not

depend on variables such as t_me available for agglomeration.

The objective of the research currently underway is to examine the effects of process
variables on the structure of agglomerates. The approach is to follow the evolution of
the agglomerate on the scale of the individual particles. The process variables are
viewed in terms of the forces resolved on the particles. For example: alterations in the

electrolyte chemistry change the magnitude (and sometimes the sign) of interparticle
forces; mixing inb'oduces shear forces; the presence of a suspension medium gives
rise to both Brownian motion, or st(_.hastic force, as well as hydrodynamic forces; and
the presence of gravity adds a systematic force. The influence of these process
variables is being studied principally through the effect each has on the geometry of
resultant agglomerates. This is quantified following a fractai approach. Numerical

simulations, both Monte Carlo and Molecular Dynamics, are being inves_gated in
addition to experimentation. The results of the simulations will not be discussed here
except for their role in guiding experimentation.

Monte Cado simulations have shown that (in the absence of rearrangement within the
agglomerate) interparticle forces do not have a significant effect on the dis_ibution of
mass within the agglomerate. As a result, experiments are currently being restricted to
agglomeration at the zero point of charge, i.e. when the only significant contribution to
the interpartide force is van der Waals attraction. The importance of Brownian motion,
or random walk particle b'ajectories, has been clearly established by the numerical
simulation of Witten and Sander[6] and the large body of work which has followed,
notably that of Meakin[7]. The current research focus is the role of hydrodynamic
forces, principally how collision probabilities depend on fluid flow around and through
existing agglomerates. The effect of gravity is being examined to determine how it
complicates experimentation.
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The most obvious complication introduced by the existenceof gravity is that particles
initially suspended in a liquid medium will settle to the bottom of the container. Further,

larger agglomerates settle more rapidly. Although the density of fractal agglomerates
decreases with increasing size, the settling rate increases since it also depends on
size to the second power. Thus, experiments in three dimensions are subject to
agglomerate collisions due to relative velocities between agglomerates (that are not
typically included in numerical models). The typical densities associated with
ceramics, 3.0 - 4.0 g/crY, make it impractical to restrict experimentation to particles
sufficiently small to avoid settling. For this reason, ground based experimentation is
currently being restricted to two dimensions.

Experimentation

The experimental arrangement is very straightforward and is based on the work of
Onoda[8]. A small hole is drilled through an aluminum slide, and a drop of a very dilute
ceramic powder suspension is placed in this hole and is supported by surface tension.
The powder particles settle under the influence of gravity to the lower surface. Since
the part/de concentration in the volume in low, virtually all of the particles settle to the

lower interface without experiencing a collision. Once settled, the Particles are
constrained to move on a surface and agglomeration occurs. A schematic of the
experiment in shown in figure 1. The upper portion of the figure illustrates the physical
arrangement, and the lower por'don shows the distribution of partic/es within the drop
once agglomeration has started. Typical conditions are the following: 0.4 pm A_203

powder (3.96 g/cm 3) at 0.001 volume percent; pH = 8.2; 4 mm hole in a 2 mm
thickness. The agglomeration process has been observed in real time using optical
microscopy (focussed on the lower surface of the drop) and is currently being

approached using static light scattering.

It is useful to analyze how this experimental arrangement is similar to and differs from
the situation being modeled in either Diffusion Limited Aggregation[6] or Cluster
Cluster Aggregation[9,10]. The standard DLA algorithm is executed within a lattice
(typically a square lattice) which is seeded at the center. Subsequent particles are
added randomly along an approximate circle which is far away from the growing
agglomerate. The only path by which a particle may be incorporated into the
agglomerate is by a random walk from the region outside the agglomerate. In the case
of CCA, the lattice is initially populated with a given number of particles which are then
allowed to undergo simultaneous random walks. The number of particles in the system
is not a function of time. Neither situation completely describes the experiments.

In the initial stage of the experiment, the number of particles per unit area is low, and
the growth of agglomerates appears to take place independently, resulting in
structures reminiscent of DLA. At later stages these agglomerates collide and link to
form large structures like those predicted by CCA (however agglomerates appear to
collide as a result of drift rather than Brownian motion). The eady stage in not truly DLA

for two reasons: one is that neighboring agglomerates compete for particle additions;
the other is because there exists a finite probability that particles can settle to the
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Figure la. Schematic illustration of the experimental arrangement for observing
agglomeration on the lower surface of a drop.
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Figure lb. Schematic illustration of the distribution of particles within the drop.
Particles within the volume of the drop rarely collide and agglomeration is
restricted to the lower surface of the drop.
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interface such that they arrive in the plane within the interior of the agglomerate. The
first effect biases the growth of agglomerates away from neighboring agglomerates.
The second gives rise to agglomerates which have densities greater than what is
predicted by DLA. This second effect also allows the interior of rings (commonly

occurring in CCA) to be filled. The end result of these experiments is typically a plane
filling structure, i.e. D = 2. Thus, in these experiments a fractal dimension (if at all

appropriate) is not truly a constant since it appears to be time dependent. A time

sequence of agglomerates* of 0.4prn AI203 at a pH of 8.2 which illustrates the time

dependence of the particle number density is shown in figure 2.

These effects can be seen in two Monte Carlo simulations which are distinguished

from simple DLA because particle additions are allowed to occur within any
unoccupied lattice site to simulate particles settling from above. In the first simulation,
a 200x200 square lattice was initially populated with 10 fixed particles. The rationale
for using a set of fixed nucleation sites is that in the experiments, several clusters will

simultaneously form on the lower surface of the drop. After some time, these will
become sufficiently large to be regarded as immobile relative to the singlets. The
cluster population which grows from the fixed nucleation sites will mimic this set. The
top and bottom of the square were subjected to periodic boundary conditions while the
left and right were treated as impermeable surfaces that did not trap random walkers.
Random walkers were randomly added, and clusters were allowed to grow until a left
to right percolation path was created. The results of this experiment are shown in

figure 3. In the initial phase of the experiment, ramified clusters (that have a visual
appearance consistent with fractals) grew with a tendency to fill the tessellation. As

they approached one another they tended to densify rather than link together. This is a
direct consequence of the fact that the random walker has a higher probability of
entering the system in between adjacent dendrite arms on a single cluster than in the
small area left between neighboring clusters. When percolation does occur, the filled

fraction of the lattice is _:_=18,344/40,000 = 0.4586 in striking agreement with the value

of 0.45 for percolation in two dimensions by random population of sites[11].

The second simulation was designed to test whether the clusters which grow in this
competitive situation are indeed fractal. In order to maximize statistics, the growth of a
single agglomerate in a single "cell" was monitored. This experiment involved seeding

the center of a circular region in a square lattice with a single pa_de and introducing
random walkers at random within the circle. To make the circular region equivalent to
the cell surrounding each agglomerate in the first experiment, the boundary was
treated as impermeable. Four stages of growth are illustrated in figure 4 along with a
standard log-log plot of number versus radius of the sampling interval. Although a
typical ramified duster was formed, it is cleady not fractal. The amount of mass near

the periphery is substantially in excess of the expectation for a fractal as evidenced by
the bump in the log-log plot between values of 4 and 4.5 on the horizontal axis. Again

this is a purely geometrical result. The most probable location for the random walker to
be introduced is the large openings between the dendrite tips. This is equivalent to
particles having a higher probability of settling to the surface in regions which are

"Photo sequence taken by K. Langguth while a graduate student at OSU.
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a) b)

c)

Figure 2.

d)

Optical photomicrographs of the lower surface of a 0.003 % suspension of
AI203 after a) 7.5 min., b) 11 rain., c) 15.5 min., d) 20 rain. Both the increase

in the number density of particles as a function of time and the two

dimensional character of the agglomerates are clearly evident. The small

particles in the image are nominally 0.4 pm and the large are 4.0 pro.
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a) ,3.
b)

d)
c)

ff

e)

Figure 3: Growth of clusters from a
fixed set of nucleation sites: a)

Initial distribution of fixed particles
in a 200x200 lattice, b) Cluster

population after adding 5,000

particles, c) after 10,000, d) a_er
15,000 and e) at percolation with a
total of 18,344 particles.
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Figure 4: Modified DLA simulation in which particles are added at random to any

unoccupied site. The upper portion of the figure shows the evolution of the
agglomerate after: a) 5,000; b) 10,000; c) 15,000; and d) 20,000 particle
additions. The lower portion of the figure is log-log plots which clearly
indicate that the resultant structures are not fractal.
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sparsely pcpulated. The magnitude of the discrepancy decreases as the cell fills,
finally converging to a straight line with a slope of 2 upon complete filling.

Experimental confirmation of this result is necessary. In the simulation, particles are
not allowed to settie to already filled sites. This is equivalent to assuming that particles
which settle onto the top of a second particle stick to the top and therefore never arrive

in the plane of observation. In real systems, however, particles which settle on top of
another may rotate into the plane. This would increase the rate of filling near the center
of the agglomerate and might compensate for the mass accumulation near the tips and
restore the agglomerate to fractal status.

The only experimental results which have been quantified resulted from
agglomeration of 0.4 Iam AI203 in a mildly convective environment (Peclet number on

the order of 10). In this situation, small agglomerates are driven together by convection
in the liquid and lead to structures reminiscent of CCA agglomerates. A tracing of a
large agglomerate, which formed 22.5 minutes into the experiment, is shown in figure
5 along with its log-log plot of number of particles within circles of systematically
vaded radii. It can be seen that apart from a transient near the agglomerate center, it is
well described by a fractal dimension of 1.54 which is in good agreement with CCA
simulation. Further quantification is underway to determine precisely the degree to
which the agglomerates resulUng from this geometrical set-up are fractal, and in
particular, the role of convection is being examined.

Application of Licjht $¢atterinq q,nd Optical Fquder Transfqrms

Our experiments will be restricted to the use of static light scattering. The analysis of
total intensity versus scattering angle has been used in the determinaUon of fractal
dimensions of agglomerates imbedded in both two dime.nsional [12] and three
dimensional space [13]. Earth based experimentation will initially be restricted to the

analysis of two dimensional agglomerates using the experimental set-up pictured in
figure 6. This represents a sample cell which has been designed to fit into the NASA
Lewis Laser Light Scattering Facility. Two principal features of this design should be

noted: first, the path of the laser beam is modified by the presence of the prism such
that it will probe the sample perpendicular to the plane on which agglomeration takes
place; secondly, a charge coupled device video camera will be used as a two
dimensional array detector allowing the simultaneous collection of data over a range
of scattering vectors.

The signal that results from the ground based experiments is expected to be an Optical
Fourier Transform of the two dimesional agglomerates which form on the lower surface
of the cuvette combined with a background signal resulting from the population of

singlets which remain suspended in the fluid above. Characterization of the
background may be approached using a horizontal laser beam which does not
sample the agglomerates. Interpretation of the signal will follow the analysis of Allain
and Cloitre[12].
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Tracing of an agglomerate of 0.4 pm AIzO 3 formed on the lower surface of

a drop along with a log-log plot which suggests it is fractal and has a
dimension of 1.54.
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Schematic of the sample cell to be used in conjunction with the NASA

Laser Light Scattering Facility.

The distribution of particles in the agglomerate is probed only with scattering vectors,

k, which satisfy the inequalities

1/F_ < k -_ l/a Eqn-2

where F_ is the radius of gyration, and a is the particle size[12]. The scatte,ring vector is
defined as

k = 4 rr n X-1 sin(e/2) Eqn-3.

This equation may be used to define the parameters for a particular experiment. For

instance, it is useful to calculate the scattering angle, 8, which satisfies the right hand

inequality of Eqn-2 since only scattering from angles below this value will contain

information about the agglomerate. Its value depends on the wavelength of the

illuminating radiation, X, the index of refraction of the suspension medium, n, and the

particle size. The results of calculations for this upper scattering angle are presented in

Table 1. These results emphasize the importance of small angle measurements.

Many powders of interest in ceramic processing are on the order of 0.5 microns. Even

with illumination with red light, 680 nm, the information is compressed below 17 °. For
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Table 1. Upper Scattering Angles Calculated for a Range of Particle Sizes
Using Two Wavelengths of Radiation

Particle Upper Scattering Angle Upper Scattering Angle
Size X = 680nm, n = 1.3 ), = 514nm, n = 1.3

O.1 50 ° 36 °
0.2 42 ° 18°
0.3 28 ° 12°
0,4 21 ° 9°
O.5 17° 7°
0,6 14" 6"
0.7 12° 5°
0.8 10" 4°
0.9 9° 4o
1,0 5 o 4o

the purposes of analyzing agglomerates of these relatively large particles, the

maximum wavelength is preferred. Clearly, the most sensitive variable is the actual

particle size, and in experiments using Fe203, this can be controlled during powder

synthesis[14].

The prospect of obtaining information in both real space (using mass distribution

obtained by optical microscopy) and reciprocal space (using light scattering) will

provide the opportunity to make critical evaluations of the respective techniques. Such

information will greatly increase the reliability of information gathered from three

dimensional agglomeration experiments since obtaining real space information with

the necessary spatial resolution is very difficult. For example, the consequences of

l:x_lydispersity can be directly tested.

Summary

Agglomeration experiments are underway which are restricted to two dimensions in --
order to eliminate artifacts due to settling under the influence of gravity. Simulations of

this experiment suggest that in a purely diffusive environment, this experimental set up

will likely produce agglomerates which are not fractal due to competition between

growing neighbors. However, the experimental data which have been collected on

agglomerates grown under mild convection is consistent with interpretation as a fractal

and has a dimensionality consistent with CCA. A significant advantage to the two

dimensional experiments is the ability to collect information in both reciprocal space

and real space.

Three dimensional agglomeration experiments are more relevant to the issues

associated with ceramic processing. These experiments will require a microgravity

environment to avoid both settling under gravity and thermal c_nvectien currents in the

fluid. These structures will be most easily probed in reciprocal space, and information

gathered from the two dimensional experiments will be of direct use in subsequent

interpretation.
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ABSTRACT

The results of both static and dynamic light scattering experiments on the aggrega-

tion of colloidal particles is reported. Commercial sols of silica and aluminum

monohydroxide were employed. Aggregation was induced either by increasing salt

concentration of a sol or mixing soLs with oppositely charged particles, i.e. mutual

flocculation or heterocoag'ulation. The agglomeration process was characterized by

determination of the mean hydrodynamic radius and fractal dimension. The results

of experiments on salt induced agglomeration of silica were consistent with prior

studies. Mutual flocculation results yield a f'ractaI dimension close to bhat predicted

from the ballistic cluster cluster aggregation model.

INTRODUCTION

The process of aggregation or the flocculation of small particles to form larger

clusters and the structures that result are important technologically and scientifi-

call),. A complete characterization of aggregation involves describing the kinetics

of the process as well as the geometrical distribution of particles within individual

aggregates. Dynamic, or quasielastic, light scattering (DLS) and static light scatter-

ing (SIS) provide complementary information towards this goal. DLS, which

measures the time dependence of intensity fluctuations in the scattered light, has

proven quite useful in study of the kinetics of aggregation and in the determination

of particle size distributions};" Static light scattering, in which the angular depen-

dence of time averaged intensity is measured, provides information on the in_ernal

structure of the aggregates. Both types of scattering experiments may be performed

on the same sample and in-situ during aggregation.

Recently, the aggregation of colloidal gold and silica has .been extensively studied
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and analyzed in the framework of fractal geometry. 3"12 In the context of colloidal

aggregates, fractal geometry may be summarized with the following relations
involving the fractal dimension, D: 13'14

Rg ,_ M v° (1)

g(r) *, a << r << Rs (2)

where R s and M are the radius of gyration and mass of the aggregate respectively,

g(r) is the pair correlation function, a is the radius of the primary particles, and d is

the spatial dimension (d=3 for all experiments discussed in this paper). The fractal

approach to the description of aggregate structure has been recently fully discussed

in the context of sol-gel processing of ceramics) 5

The structures of experimental aggregates may be compared to those predicted from

numerical models in order to infer the mechanism(s) of growth. The numerical

models may be broken down into two principal classes: particle<luster or cluster-

cluster. 16'17 In the former, aggregate growth is considered to result only from the

addition of singlets to an existing cluster, or aggregate, while the latter allows

collisions between growing aggregates. Each of these broad classes may be further
refined to account for Brownian motion (diffusion limited models), convection

('ballistic models) or the presence of a significant barrier to aggregation (reaction

limited models). Typically_ the experimental fractal dimension is compared to the
values from various numerical simulations and when a match is found it is inferred

that the mechanism included in the model dominated under the given experimental
conditions.

The kinetics of aggregation can be analyzed by following either the time dependence

of R s, i.e. the upper limit of Eqn-2, using SIS or through a determination of the

hydrodynamic radius using DIS.

In DLS the initial decay rate of the fluctuations in the scattered light intensity may

be deterrnined from a cumulant analysis of the measured autocorrelation function.

The ratio of this decay rate to the square of the wave vector may be used to obtain

a measure of the translational diffusion coefficient which in turn may be analyzed

using the Stoke's Einstein equation to yield a hydrodynamic radius, Rh. The wave

vector, q, is defined by

q = (4nn/'Lo) sin(0/2) (3)

where n is the index of refraction, k0 is the wavelength of the light,'and O is the
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laboratory scattering angle. DLS studies have indicated that Ra follows an expo-

nential time dependence under reaction limited conditions (slow aggregation) 9 and

a power law under diffusion limited conditions (fast aggregation), n

Stadc light scattering may be analyzed to yield Rg by analyzing the transition

between the power law regime and the Guinier regime. The scattered light intensity,

I(q), is directly proportional to the static scattering factor S(q), 13"1s i.e.

l(q) = M2S(q) (4)
I0

Given an appropriate expression for S(q), it is possible to analyze the measured

intensity as a function of q, or equivalently 0, to determine Rg and D. One such
expression which has been used in the analysis of colloidal silica aggregates 7'12 is

2(qR_)2] -(°a)

+ 3DJ

(5)

The function was selected based on its simplicity and the fact that it shows the

correct limiting cases, which are:

I(q) = q-D ql% >> 1 (6)

and

qRg << 1

(7)

Since the Rh and Rg can be independently determined it is possible to evaluate the

relationship between the two. Both experiments and simulations 12 suggest that the

two are related by a simple proportionality and that the proportionality constant is

near unity (although it has been pointed out that this analysis neglects the effect of

polydispersity).

We used a slightly different approach. It is possible to relate 5(q) to a volume integral
13,14

involving g(r) and therefore an assumed form for g(r) can be used to obtain the

expression for S(q). Since the integration volume is large compared to the size of

the cluster it is necessary to multiply Eqn-2 by a cutoff function, fir), to account for

finite size of the cluster. The form of this cutoff function must be such thatflr) = 1

for r << Rg and f(r) _ 0 for r >> R,v Several functions have been investigated 12'13

including a step function, a Gaussian decay, fir) = exp(-(r/Rg)2), and an exponential,

fir) = exp(-r/ Rg). We have employed the latter. Assuming g(r) = exp(-r/Rg)/r (d'r))
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and performing the appropriate integration, with the assistance of an appropriate
handbook, 20 yields

5(q) qci+cqR,;' 
(8)

Although this expression has a more complicated form than Eqn-5 substitution of

the appropriate series obtains the same limiting forms.

The results of the SLS and DLS may be compared in two ways. Ftrstly, a relationship

can be assumed between Rh and Rg may be assumed (e.g. R h = R$). This allows the

data from DLS to be used to define Rg leaving only a single fitting parameter, D, for
the SIS data. Alternatively, the data from DIS and SIS may be independently"

analyzed and the values of Rs and Rh compared.

EXPERIMENTS

Light scattering experiments were carried out on specimens in which aggregation

was induced by one of two qualitatively different mechanisms: i) electrostatically

stabilized single phase (silica) sots were rendered unstable through the addition of

salt leading to aggregation as a consequence of van der Waats attraction or i.i) two

sots containing particles of opposite charge (negative silica and positive aluminum

monohydroxide) were mixed leading to mutual flocculation, i.e. aggregation as a
result of electrostatic attraction.

Materials

Scattering samples were made through dilution of commercial sots of either colloi-

dal SiO2 (Ludox-AM, DuPont Co., Wilmington DE) or AIO(OH) 0NTyacoI AL-20,

Nyacol Products Inc., Ashland MA) using doubly distilled and deionized water

(resistivity of =2.3 Mfl-cm). Ludox-AM is supplied as a sol of 30 wt.% (15.7 vol.%)

silica. The particles are nearly spherical and closel), sized. The surface of these

particles have been modified by substitution of aluminum into the tetrahedral sites

normally occupied by silicon. This produces a negative charge which is insensitive

to pH. The suspension is supplied at a pH of 8.8, but was adjusted to 4 after dilution

using nitric acid. Most experiments on salt induced aggregation were conducted at

0.5 wt.% which corresponds to a particle number density of 2.34 x 1015 cm "3. The

sol was diluted to 1.0% and an equal volume of a 2M NaC1 solution was added

yielding sample which was 0.5% SiO2 and IM NaC1. In some experiments the

sample was agitated after the addition of the NaC1 while in others extreme care was

taken not to vibrate or shake the sample.

The Nyacol-AL20 is supplied as an electrostatically stabilized suspension (iep=S

and as-supplied pH ---4) with 27.6 wt.% (11.2 vol.%) A10(O)OH). In contrast to the
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Ludox, AIO(OH) particles are high aspect ratio plates (=5 nm x =50 nm x =50 nm)

and have a wider size distribution. For the mutual flocculation experiments, this

suspension was diluted using a pH=4 nitric acid solution, and vigorously mixed

with an equal volume of equally diluted Ludox.

To remove dust, sots were multiply filtered using either a LID/X filter syringe with

a 0.2 I.tm membrane or a 0.2 lam Miller-FGS filter unit. The characterization of stable

dilute sots included the determination of particle size distribution using DLS and

confirmed using transmission electron microscopy.

All light scattering experiments were carried out using a commercial LLS system

(Brookhaven Instrument Corporation) at the Laser Light Scattering Laboratory of

the NASA Lewis Research Center. Our experiments employed a range of,scattering

angles from 20 ° to 150 ° for the SLS experiments. Most DLS data was collected at

90 °. A vertically polarized 10 mW Ar laser (X0 = 5145]k) was used as the incident

light source. In some experiments the incident beam intensity was reduced using

neutral density filters. The scattered light was detected using a photomultiplier

mounted on a precision goniometer. The reported SLS data represents the average

of five 5-second runs at each scattering angle. The time.necessary to complete an

angular scan (=15 min) was short compared to the aggregation rate observed in the

salt induced experiments and long relative to that observed in the mutual floccula-

tion experiments (i.e. the aggregate structure is not expected to change on the time
scale of the scan in either case).

In the DLS experiments a second ¢umulant analysis was used to determine the mean

aggregate size as a function of time. The reported hydrodynamic radius must be

regarded as an apparent hydrodynamic radius since the measurements were taken

at 90 ° and therefore did not satisfy the criterion that qR << 1. It is known that failure

to account for the q-dependence of the apparent value of Ra will result in an

underestimate for a polydisperse system, ud9

RESULTS AND DISCUSSION

Salt Induced Aggregation of Ludox

Two types of experiments were performed. Our initial experiments Were designed

to grow large aggregates in order to minimize finite size effects. In these experi-

ments, samples were prepared by allowing an agitated mixture of the diluted

Ludox-AM and NaCI solution to rest undisturbed for a period on the order of a

month. In all cases sedimentation was observed. The samples were resuspended

using an ultrasonic probe and a specimen was extracted for SLS measurements.

Power law behavior is observed over the entire range of scattering vectors and D

was determined to be 2.21. This relatively high value for D is consistent with similar

experiments on Ludox.. s'n
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Figure I The value of the apparent hydrodynamic diameter determined from

DLS on a salt induced aggregated silica 0.5 wt. % sol as a function of time. Zero

time is defined by the addition of a salt solution to produce I M NaCI. The

kinetics are best described by an exponential growth law.

The second set of experiments involved quiescent samples. In these experiments

the 2 M NaC1 solution was slowly poured into a cuvette containing the diluted

Ludox. The cuvette was then placed directly into the light scattering sample holder
and both SLS and DLS measurements were performed.

The kinetics of aggregation were found to follow an exponential growth law which
is characteristic of reaction limited cluster aggregation, u The results from DLS

experiments on a 0.5 Wt.% Ludox-AM sols with 1M NaCl is shown in Fig. 1. The

apparent hydrodynamic diameters, a, presented in this figure were derived from a

second cumulant analysis. The solid line represents a best fit to the displayed data

which may be written as

a = 23.1 exp(0.062.t) (9)
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where t is time expressed in hours and a is expressed in nm. The value of the

constant L,'t the argument of the exponent was not analyzed, but it is related to the

concentration of particles and the magnitude of the residual repulsive interparticle
forces.

It is surprising that exponential kinetics are observed since the experimental condi-

tions (i.e. 1 M NaC1) were expected to yield fast diffusion limited aggregation and

power law kinetics. This is particularly puzzling since the results of the SIS

experiments indicate that the system was indeed undergoing diffusion limited

aggregation.
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Figure 2 SLS profiles on the same sample as Fig. 1 as a function of time. The

solid lines represent fits using Eqn-8 in the text for the static scattering factor,

S(q), with D = 1.75 and Rg assumed to be equal to one half of the hydrodynamic
diameter determined for DLS. The hydrodynamic diameter for each fit is shown

in the legend.
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Figure 3 The same data as Fig. 2, but the solid lines are calculated using Rg as a

fitting parameter in Eqn-8 (D still assumed to be 1.75). Significantly better fits are

obtained particularly for times less than 49 hrs. Rg was assumed to be equal to
the hydrodynamic diameter for the three uppermost curves and equal to the

number to the right of the slash in the legend for the three lower curves.

The SLS results on the same sample are presented in Figs. 2 and 3. The same data

points are plotted in each figure and the solid curves were all calculated using S(q)

as defined in Eqn-8 assuming d=1.75 which is very close to the value of 1.74
previously determined for fast diffusion limited aggregation of colloidal silica} 1

The difference between the two figures was the procedure used in evaluating R_.

The curve in Fig. 2 were calculated assuming Rg was equal to the apparent R h

determined fro m DL S (o ne half o f the hyd rodyna mic d ia meter given in parentheses

in the legend). In order to calculate intensity it is necessary to determine the
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Table I Rh and R_ Determined from SIS and DIS, Respectively. a

0.80 11 9 0.2 1.2

20.45 47 47 1.I 1.0

25.93 61 70 1.6 0.9

49.68 248 496 I 1.5 0.5

67.07 813 1626 37.8 0.5

73.58 3137 6273 145.9 0.5

avalues determined on a 0.5 wt. % sol of Ludox-AM in a 1 M NaC1 solution as a

function of time. The value of Rg was determined by fitting the data in Fig. 3

using Eqn-8. The value of Rh was determined from DIS at 90* using an A.r Laser

yielding q = 1/43 (nm'l).

magnitude of the proportionality constant in Eqn-8. This was empirically done for
one set of data and the same value was used for all subsequent calculations. The

calculated curves are in good, though not perfect, agreement with the experimental
data both in terms of the systematic increase in intensity and the shift of break in

slope to lowervalues of q. This indicates that the assumption of a simple propor-

tionality between the characteristic aggregate sizes measured in DIS and SIS is a

good approximation.

Somewhat better fits to the SIS data can be obtained if the value of Rg is used as a

free fitting parameter. This was done in generating the solid curves presented in

Fig. 3. A summary of the values ofR s determined from SIS and Rh determined from

DLS as a function of the dimensionless parameter qR s presented in Table 1 shows

that when qRg is on the order of I or smaller the ratio Rh/Rg is nearly unity and that

when qRg >> 1 this ratio is =0.5 (it should be noted that the fit to the SIS becomes

insensitive to Rs as aggregation proceeds and therefore small differences from 0.5
cannot be resolved). These results are consistent with the fact that the effective

diffusion coefficient observed in DIS increases as qR. exceeds I as a result of the

increasing importance of rotational diffusion. 1s'19 Th_ magnitude of the effect, i.e.

a factor of 2, is in very good agreement with the predictions that have been made

for diffusion limited aggregation over the range of qR s used in our DIS experi-
menLs. 18,19

Mutual Flocculation ofLudox-Nyacol Mixtures

Mutual flocculation was observed to be very rapid. Even at particle concentrations

of 0.1 wt. % the process was complete before the sample could be inserted into the

light scattering system (1-2 rain.). As a result of the rapid growth of large aggregates

power law behavior was observed throughout the entire range of q investigated.
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Figure 4 SIS profiles determined from a mixture of Ludox and Nyacol sols of

0.1 wt. % as a function of time. Rh values determined from DLS are given in the

legend. Power law behavior is observed and the intensity decreases as a function

of time which is attributed to large aggregates settling out of the path of the

primary beam.

The results of a typical experiment using 0.1 wt. % suspensions are shown in Fig. 4.

The best fits using Eqn-8 and the 2.Rh from DLS yield D = 1.84 which is significantly

higher than that observed for the salt induced silica aggregates. The value of D

observed for mutual flocculation of 0.5 wt. % suspensions was significantly higher,

=2.03. The only change in the SLS with time was a slow uniform decrease in the

intensity of the signal, =40% after 23 hrs. DLS indicates that the aggregate size first

increases and then decreases. Both of these observations are consistent with settling

under gravity. The net effect being the reduction of the number of scattering centers

in the path of the beam as the larger clusters settle down.
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The high fractal dimensions observed in the mutual flocculation experiments may

be qualitatively rationalized in terms of electrostatic interactions. The fact that the

aggregation kinetics are very rapid indicates that the electrostatic interaction is

relatively long range. Thus it is expected that particle motion will not be dominated

by Brownian motion, rather particles of opposite charge will tend to follow ballistic

tra'ectoriesj towards each other. Such a process is consistent with a higher fractal

dimensionJ s'17 In addition, it is plausible (though unproven) that electrostatic

interaction between neighboring branches within an aggregate will increase as the

aggregate grows and lead to restructuring. This would also be expected to drive D

to higher values.

CONCLUSIONS

I) The assumption of an exponential cutoff on g(r) yields a form of 5(q) which

is consistent with the SLS results on both salt induced single phase ag-

gregates and aggregates produced by mutual flocculation.

2) Silica aggregates grown in a 1 M NaCI solution yield D = 1.75. Aggregates

allowed to settle and then resuspended exhibit D = 2.21. Both observations

are consistent with prior work. The scaling relationship between R 8 (deter-

mined by SIS) and Rk (determined from DLS) is also consistent with prior

calculations and experiments.

3) Mixtures of silica and aluminum monohydroxide aggregate very rapidly

and exhibit higher fractal dimensions suggesting ballistic aggregation and

possibly restructuring.
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Fractal Dimension of Alumina Aggregates Grown in Two Dimensions

Judith L. LaRosa*'* and James D. Cawley *'t

Department of Materials Science and Engineering, The Ohio State University., Columbus, Ohio 43210

The concepts of fractal geometry are applied to the analysis

of 0.4-/zm alumina constrained to agglomerate in two
dimensions. Particles were trapped at the bottom surface

of a drop of a dilute suspension, and the agglomeration
process was directly observed, using an inverted optical

microscope. Photographs were digitized and analyzed,
using three distinct approaches. The results indicate that
the agglomerates are fractal, having a dimension of
approximately 1.5, which agrees well with the predictions
of the diffusion-limited cluster-cluster aggregation model.
[Key words: alumina, aggregates, fractals, geometry,
suspension.]

I. Introduction

ONTROL over the extent of agglomeration is fundamental
to powder processing of ceramics. Quantitative measures

of the state of agglomeration, such as average size and re-

ciprocal packing efficiency, 1 are therefoa'e of value. Recently,

the fractal dimension t has proven useful in quantifying the

geometry of colloidal aggregates of both metallic and ox-

ide particles '--_6 as well as structures observed in sol-gel

processing of ceramics, t7 In particular, the fractal dimension

provides a quantitative measure which allows comparison of

experimental observations to computer-generated structures, _s

This study focused on agglomeration of submicrometer

commercial alumina (Sumitomo AKP30) constrained to a

surface, i.e., two dimensions using the technique of Onoda. t9

In the experiments, gravity acted perpendicular to the surface

and, therefore, played no role in the agglomeration process.

This allowed the results to be compared to diffusion-limited

aggregation, computer models. Real-time qualitative observa-

tions of the agglomeration process confirmed the models'

applicabil_v. In addition, analyzing digitized photographs of
the agglon_rates revealed that the structures were indeed

fractal, having a fractal dimension of about 1.5.

II. Background

Fractal geometry can be used to describe a wide range of
physical phenomena. -'°'-'t A fractal agglomerate occupies si-

multaneously a Euclidian dimension d and a fractal dimension

D. For an arbitrarily large agglomerate, the maximum possi-
ble D equals d, and when considering completely connected

agglomerates, the lower limit of D is one. In general, a lower
fractal dimension indicates a more tenuous structure, while

a higher fractal dimension means that the structure is more

space-filling.
The fractal dimension is determined from several relation-

ships which are unique to fractal geometry. -'t6"t_z°'-'t One of

D.R. Clarke--contributing editor
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these relationships incorporates the density correlation function

C(r):

(c(_)) = _-* (0

C(r) = (I/N)Zp(r,) p(ri + r) (9.2)
i

where N is the number of particles or occupied sites in the

agglomerate, i is the observation point or occupied site, p(r,)

is the density at the observation point = 1, and p(ri + r) is

the density of occupied sites located a distance r from the

observation point and

-a = D= - d (.3)

where D,, is the fractal dimension, and d is the Euclidian

dimension in which the agglomerate is grown.

The -a indicates that density decreases at larger distances.

C(r) in Eq. (2) represents the probability of finding a particle or

occupied site at a distance r from another particle or occupied
site. This probability, in turn, is proportioh_'l" to the density of

the agglomerate at a distance r from a particle. Experimentally,

C(r) is found by calculating the density at a distance r from

a chosen occupied site or observation point. For monosized

particles, number density can replace the mass density. In
two dimensions, the number density at r equals the number

of particles N divided by the area of a ring containing the N

panicles. For an inner ring radius of r and an outer radius of
(r + Ar) where Ar is small, (C(r)) is approximated by

(C(r)) _ (N(r))/27rrAr (4)

In Eq. (1), (C(r)) = (1/Nr)";,Ci(r) where G(r) is measured

at a distance r from a single point i in the agglomerate. The
distance r is constant over all i. and Nr is the total number of i

points sampled from the agglomerate. A graph of In (C(r)) vs

In (r) yields a_lope equal to -a from which D= is calculated.

Fractal dimension can also be obtained from the equation

(M(r)) x r°, (5)

M is the mass enclosed by some distance r (Eq. (5) may be

obtained from an integration of Eq. (4)). For example, M may
be the mass contained in a circle of radius r. Then (M(r)) is

the mass averaged over the total number of i point origins for

each r. D 0 equals the fractal dimension. If each panicle has
the same mass, M may be replaced by the number of particles

N contained in a sphere of radius r:

(N(r)) " r °p (6)

As a result, the graph of In (N) vs In (r) has a slope equal

to D o .
A third measure of fractal dimension is yielded by the rela-

tionship between the radius of gyration R s of an agglomerate
and its total mass M:

(Rs(M)) x MO'°,'

where

R, = _/ff__ mir_/M

(7)

and m, is the mass of particle i at r, from the origin, and D r
is the fractal dimension.

But for monosizcd particles. M = mNr, where m is the

mass of particle, and Nt is the total number of particles in

PAGE BLANK NOT FILMED
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the agglomerate:

where

(R,(N)) _ N(r''°,_ (S)

..=7(z..."/,,+)
Therefore, the slope of In (Rl) vs In (NT) is the multiplica-

rive inverse of D_,. In principle, both R t and N.r are measured
from one agglomerate during the course of its growth, although
in practice, i3 R I and NT from each of several agglomerates
may be used, assuming that the agglomerates grew under the
same conditions.

Averaged values are used in Eqs. (1) and (4)-(8). because
experimental agglomerates are not deterministic. A determin-
istic fractal has exactly the same structure over all length
scales. Since this does not hold exactly for real agglomerates,
the relationships described above are true only in a statistical
sense.

One experimental test for the appropriateness of the fractal
approach is whether D, -- Dn --- D r.

Although complex computer simulations have been de-
veloped to include structural arrangements and reversible
agglomeration, _''t_ the simpler models provide clear insight
into agglomeration growth in two, three, and ml_re dimensions.
One of the most influential of these has been the diffusion-

limited aggregation (DLA) model. In'this model, the first
particle is released at a randomly chosen position some
distance away from a fixed seed particle• It diffuses through
space following a random-walk course which simulates
Brownian motion. If it comes in contact with the seed. it sticks.

Additional particles are released one at a time and stick to the
agglomerate upon contact. One variation of DLA is diffusion-
limited cluster aggregation (DLCA). Unlike DLA, in which
single particles are continuously added to the agglomerate
upon particle-to-cluster collisions, the DLCA starts with a fixed
number of initially dispersed particles which simultaneously
undergo random walks. The ensuing collisions involve particle
clusters of all sizes. When the Euclidian dimension is two,
DLA produces an agglomerate with a fractal dimension of
1.71, while DL_'_ yields 1.45.

III. Experimental Procedure

Suspensions of 0.001 vol% alumina were prepared by adding
0.4-_m-diameter a-Al.,O_ to a buffer solution of HCI and
tris(hydroxymethyl)aminomethane. The buffer had an ionic
strength of 0.2M, and it provided a stable pH near the point
of zero charge for alumina measured to be ",,8.2. This ensured
that agglomeration would result upon collision of two particles.
In order to observe the agglomeration process, a drop of the
suspension was placed over a 4-ram hole in a 2-ram-thick
aluminum slide. The particles settled under the influence of
gravity to the lower surface, where they were observed through
an inverled optical microscope. The particle number density
in the drop was low, making particle-particle collisions in the
bulk rare, and virtually all of the particles which were observed
settled as singlets. Therefore the entire agglomeration process
took place on the two-dimensional lower surface of the drop.

Videotaping and conventional metallographic photographs
were taken as a function of time. The photographs were
digitized, using a high-resolution video camera and a frame
grabber board mounted in a personal computer. Fractal di-
mensions for individual agglomerates were calculated from
Eqs. (I) and (6), using the X-Y coordinates of the particles.
In addition, pictures of computer-simulated agglomerates from
other investigators ts were digitized in order to check the
reliability of the data processing methods.

Fig. 1. Photomicro_,raphtaken of the bottom surface of a drop of
a 0.001 vol% suspension of 0.4-,u.m alumina (Sumitomo, AK_P30)
after 22 rain. A_,_lomerates of a wide variety of sizes are present,
ranging from several to several hundred particles. Out-of-focus sin¢let
particles which are in the process of settling to the lower interface'are
also apparent.

IV. Results and Discussion

Real-time observation of the aggregation process indicated
that the overwhelming majority of particles settle to the
interface as singlets. Vigorous Brownian motion within the
plane of the interface was observed. This caused particles
to collide and agglomerate. At first, collisions were between
either two particles or a singlet and a small cluster of particles.
These types of collisions occurred throughout the experiment,
since single particles were constantly settling to the interface.
However, as time elapsed, cluster-cluster collisions dominated
the aggregation process. One assumption frequently made in
the fractai analysis of aggregate growth is that agglomeration
is irreversible. No bond breaking was expected, or observed,
in these experiments. It is also generally assumed that no
rearrangement takes l_lace. This was also generally consistent
with experimental observation. However, multiple bonds were
occasionally formed between clusters as part of one would
stick to the other, rotate slightly, and attach in one or two
other places.

The observed resistance to rearrangement is believed to
result from the fact that the primary particles in the aggregate
are not true spheres but somewhat irregular. This leads to local
minimums in the inter'particle energy as a function of rotation.

The larger agglomerates contained 30 to 100 particles.
Figure 1 is a photograph of an interface taken 22 min after
a drop was placed in the slide. Visual inspection of this
micrograph reveals a strong qualitative similarity to the results
of computer simulations using DLCA. _6't_

The results obtained from digitized images of some
computer-simulated agglomerates (the algorithms used to
simulate these agglomerates are not relevant to the experiments
discussed here) are shown in Table I. Good agreement was

Table I. Fractai Dimensions of Digitized
Two-Dimensional Computer-Simulated

Agglomerates (from Ref. 18)

Expected_ D,,, D_

Diffusion-limited
particle-.cluster 1•71 1.71 1.67

Ballistic cluster--cluster 1.55 1.63 1.53
Reaction-limited

cluster-cluster 1.61 1.59 1.56
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Table II. Fractal Dimensions of Alumina Agglomerates

Agglomerate

Da

Ar = 0.4/zm Ar - 0.8 ,urn DB

Photograph A: t -- 22 min. pH 8,5
1 1.46 1,47 1.45 -- 0.06
2 1,54 1.55 1.41 = 0.10
3 1,55 1.45 1.40 _- 0.07
4 1,41 1.31 1,45 = 0.04

5 1.38 1.29 1.36 : 0.07
6 1.44 1.31 1.48 _ 0.05
7 1.56 1,54 1.51 = 0.05
8 1.57 1.55 1.52 _ 0.06
9 1.51 1.50 1.59 "- 0.07

10 1.51 1.37 1.41 Z 0.05
11 1.63 1.58 1.62 Z 0.03
12 1.55 1.44 1.45 +__0.04
13 1.30 1.22 1.35 "_"0.06
14 1.61 1.56 1.52 _ 0.05
15 1.61 1.51 1.55 "*"0.07
16 1.41 _ 0.03
17 1.60 - 0.06
18 1.41 = 0.06

I
o

3 _
4

Photograph B: t -- 25 rain, pH 8.5
1.69 1.64

1.68 1.62
1.56 1.48

Photograph C: t - 40 rain, pH 8.6

Photograph D: t - 20 rain, pH 7.9

Photograph E: t -- 30 rain, pH 7.9

1.47 " 0.0'_
1.48 _ 0.04

1.35 _ 0.04

1.42 + 0.05
1.39 - 0.04
1.44 ± 0.04

1 1.45 _ 0.05
2 1.42 -.+ 0.05

Avg: 1.53 1.47 1.47 -"- 0.03
SD: 0.10 0.12 0.08

Range" 1.30-1.69 1.22-1.64 1.35-1.64

found be/.w_een the results obtained using the computer
programs and the prior published values. Additional checks

on the programs including analyzing sections of the a circle

(one-quarter and one-half circles) which yielded Da of 1.0

and the determination of the pair correlation function for an

fcc lattice with the program used to calculate D,.
Table II lists the fractal dimensions obtained for the alumina

agglomerates. Time elapsed, t, and pH are also given for each

of the photographs. In calculating C(r), values of Ar were used

corresponding to the particle diameter and twice the diameter.
The average values of Do are 1.53 and 1.47 for Ar = 0.4

and 0.8/.*m, respectively. Confidence intervals of 95% are

indicated for values of Da, for which the average is 1.47.

Typical plots used to determine D,, and D B from a typical

digitized agglomerate are shown in Figs. 2 and 3, respectively.

Attempts were also made to determine D r from a plot of In

(Rg) vs In (total number of points); however, the results were
inconclusive. It was observed that the values obtained were

strongly dependent on the number of data points used, which
implies that the total number of agglomerates analyzed is too

small to yield a well-determined value for D r.
These results of D,, and D e are in agreement with the ex-

pected value of 1.45 based on DLCA computer simulations, _

indicating that the experiment is a physical realization of this
model. These values are also significantly higher than the

_1.2 observed by Hurd and Schaefer t5 for two-dimensional

aggregation of silica spheres. In their experiments, however,

a strong interparticle electrostatic interaction (which was not

7

6

5

In[<N(r)>l 4

3'

2"

1

0 1 2 3 4

In(r)

Fig. 2. A plot of the natural Ior,arithm of the avera=e number
of panicles within a sampling inte_'al as a function of t'he natural
logarithm of the size of the sampling interval. The strai_,ht line
represents the best fit using Eq. (6). and the slope is equal to the
fractal dimension.
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_f"_, 3. A plot of the pair correlation function for the same agglom-
erate as Fig. 2. The straight line represents the best fit using Eq. (1)

up to a cutoff radius. The solid squares represent the points used in
the fitting procedure.

;present in our experiments) was believed to be responsible for
the lower observed dimension.

%

V. Conclusion

The random and d!sorderly agglomerates grown in these
experiments can be meaningfully described in terms of a fractal
dimension of _1.5. This value is close to the value expected
from the diffusion-limited cluster-cluster aggregation model.
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Abstract

The standard ballistic aggregation model assumes that the particles which are added

to a growing agglomerate follow straight line trajectories. The finite viscosity of real

fluids, however, bias the flow of liquid around rather than through the agglomerate.

The result of this is that particles, which follow sreamlines in the fluid, will tend to be

deposited near the periphery of the growing agglomerate. A modification is made to

the ballistic aggregation model in order to account for this effect and the geometry of

the resultant structures is characterized. The simulation results suggest that even

under conditions where convection dominates particle motion, branched open

structures are likely to be formed.
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1. Introduction

Agglomerates are generally formed as a result of collisions between primary

particles, and small clusters of particles, in a suspension. The size, shape, and internal

pore distributions of agglomerates are dependent on how the agglomerate was

assembled and the response of the bonded particles to external forces. Computer

simulation has proven a powerful method for improving our understanding of the

mechanisms involved in agglomeration.

Several types of numerical models are available to study colloidal aggregation.

Particle or aggregate transport in these models can be tailored to include either

ballistic, diffusive, or mixed components of motion. The mode of transport is

distinguished by the particle or aggregate trajectory: ballistic motion follows a

curvilinear path, and diffusive motion imitates a random walk. Probability models, such

as diffusion-limited aggregation or ballistic growth, and molecular models, such as

Brownian dynamics, are commonly used to simulate colloidal aggregation 1-1o.

Fig. 1 schematically illustrates the ballistic growth and diffusion-limited

aggregation models (DLA and BA, respectively). Typical 2-dimensional aggregates

grown from these models are shown in Fig. 2. The typically open nature of a DLA

agglomerate is in sharp contrast to the compact nature of the BA agglomerate.

In Table 1 the fractal dimensions of the aggregation models discussed thus far

are tabulated from a review by Meakin 7. Results are included for both particle-cluster

and cluster-cluster models. In the former, agglomerates are generated by successive

additions of single particles to a growing agglomerate whereas the latter begins with a

fixed number of isolated particles and allows growth through the motion of both single

particles and clusters. One difference between particle-cluster and cluster-cluster

aggregation is that with cluster-cluster aggregation the fractal dimension is relatively

insensitive to the type of transport.

2. Motivation for the present work



The relationship between the mechanism of particle addition to a growing

agglomerate and geometrical aspects of resultant structure was investigated. The

interest in examining colloidal aggregation, from the perspective of convective

dominated transport, stems from direct observation of alumina aggregation at an air-

water interface 11. In these experiments, low volume fraction, 0.01%, suspensions of

0.4 pm alumina (Sumitomo AKP-30) were prepared. Drops of these suspensions were

placed in a hole in an aluminum microscope slide and observed using an inverted

optical microscope focussed on the lower surface of the droplet. Due to the low volume

fraction of solids, the particles had a very low collision probability in the bulk and were

observed to settle to the lower surface almost entirely as singlets. Therefore it was

possible to directly observe the entire agglomeration process. In several experiments,

drafts in the room air produced significant convection. (It was possible to carry out

experiments in which the role of convection could be neglected 12, but these are not

discussed in this paper). A diagram made by superimposing a series of images

collected using a video camera is shown in Fig. 3. The large unshaded figure

represents a portion of a large agglomerate which was fixed to aluminum slide and

was therefore immobile. The observed direction of drift is indicated by the arrow.

The positions of two smaller agglomerates are shown as a function of time; one

of which (shaded black) was shielded from the convective flow due to its location in a

"bay" and was observed to move only by Brownian motion while the other (shaded

gray) displayed movement which was dominated by convection. As noted on the

figure, the elapsed time is nearly equal between the first and last image for each. It is

evident that the net displacement due to drift is much larger than that due to diffusion.

In addition, it appears from these, and other, results that the probability of attachment

in the presence of a fluid with a finite viscosity will be highly dependent on the degree

of convection and the local geometry. The regions which extend into the fluid

effectively screen the regions of the agglomerates associated with bays suggesting

that under conditions of that convective transport, similar to the diffusive or Brownian

case, preferential tip growth is to be expected.

This analogy leads to the idea that the resultant structures may be fractals, since

one of the characteristics of "fractal growth" by Brownian motion is the high growth

probability for dendrite tips relative to interior of agglomerate. Several authors have

investigated the region of a growing aggregate which is available for new growth,



termed an active zone 13, in order to examine the screening behavior of fractal

structures, i.e. the shielding the interior from diffusive growth 13-19.

In this work, the standard ballistic growth model was modified to include the

contribution of hydrodynamic screening by the agglomerate. The approach was to

assume that convective flow was approximated by fluid flow around a circular

geometry imposed on a growing aggregate as an approximation to hydrodynamic

screening where interior fluid flow in porous materials is inhibited. Growth of the

aggregate was restricted to single particle additions which followed the streamlines

around the circular geometry. This type of fluid flow leads to preferential tip growth by

excluding growth within a circle with a radius related to the radius of gyration of the

aggregate. The simulations are restricted to 2-dimensional particle-cluster models

since this class of models is most sensitive to the effects of particle transport. The

influence of different relationships between the radius of gyration and the

hydrodynamic radius was examined by characterizing structures produced using

computer simulations.

Analyzing aggregate geometry is usually a difficult task since they are generally

highly irregular structures. The outputs of the numerical model developed in this work

were characterized using four quantitative measures: i) average coordination number

of the particles making up the agglomerate; ii) the fractal dimension determined from

the scaling of the radius of gyration during growth, the distribution of mass within the

agglomerate, and the pair correlation function; iii) measurement local density

fluctuations within the agglomerate; and iv) a characterization of the active zone of the

growing agglomerate.

The average coordination number is a measure of connectivity (for a completed

connected structure the minimum value is two and for a two-dimensional structure of

equal sized particles the maximum is six). The coordination number was calculated by

determining the number of particles with center-center distances below a certain

distance, 1.1 or 2.0, and averaging the result. The number of nearest neighbors is

determined using the 1.1 cutoff while the total number of first, second and third nearest

neighbors was determined using 2.0.

The fractal dimension 2o has become a standard measure for agglomerates. It

can be determined from a number of different scaling relations, in this work the

following set were used:



Rg a Mt 1'_ 1)

M(r) a rD 2)

<c(r)> a td-D 3)

where Rg is the radius of gyration, M t is the mass of the agglomerate at time t, M(r) is

the mass contained in a circle of radius r centered on the center of mass of the

agglomerate, <c(r)> is the density correlation function, r is the distance between two

points within the agglomerate, and D is the fractal dimension 11,21.

Local density was measured by randomly choosing 100 points located <Rg and

determining the density of particles within both 4 and 10 diameters from this point.

These values were then normalized using the overall density for the particular

agglomerate (10,000 divided by 2nRmax 2) .

4. Numerical Model Development

Colloidal particles dispersed in an aqueous suspension encounter one another

through the influence of several forces; external fields such as gravity, convection, or

applied voltages, interparticle forces including Van der Waals and electrostatic,

hydrodynamic interaction, and Brownian forces. These forces are not explicitly

evaluated in the model. In the experiment, gravity simply serves to populate the plane

of interest. Particles are kept at the near the point of zero charge so that the only

operative interparticle force is Van der Waals which is only considered to result in

irreversible bonding when particles come into contact. The only external field is a

convection flow which is considered to overwhelm any contribution from Brownian

motion.

The issue of hydrodynamic screening in the presence of mild convection was

addressed by approximating the flow field around the agglomerate by that around an

infinitely long cylinder having the same hydrodynamic radius. The axis of the cylinder

is perpendicular to the plane of aggregate growth and passes through the center of

mass of the aggregate which defines the origin of the coordinate system. An aggregate

is depicted in Fig. 4 along with the flow field of the cylinder including several

streamlines of constant potential. The stream function _ describing the streamlines of

fluid flow around a cylinder geometry are calculated by the potential flow equation

= V [y - YRh2/(x2+y2)] 4)

where V is the undisturbed fluid velocity at a distance x2+y2>>Rh2 such that V=-



0_/a¥=-V x and Vy--_/(Yx----_ with R h equal to the cylinder radius 22. Eqn. 4 assumes

laminar (low Reynolds number) and irrotational flow of an ideal fluid (i.e. constant

density and zero viscosity) 2"3.The resultant description of the pressure at the upstream

half of the cylinder (i.e. the side from which particles arrive) is close to what is found

experimentally 24.

Fluid flow around an aggregate is incorporated into the ballistic growth model

by treating growth particles as point masses and confining their trajectories to

streamlines. Eqn. 4 when rewritten as a cubic in y can be solved exactly25; however, a

linear iteration solution for nonlinear equations 26 was used to approximate the

streamline of constant potential. The three pieces of information needed for this

method are the random initial coordinates of the incoming particle, the undisturbed

fluid velocity, and the hydrodynamic radius. The particle is moved downstream in

increments of 0.01 /Jm. Each new position is found by iterating the until the stream

function is within a tolerance of +1% of _(xo,Yo). The routine continues until contact

with the aggregate. A particle is considered to be in contact with the aggregate when

the center-center separation distance is within ±1% of the particle diameter. A particle

is discarded if it travels past the aggregate. Several procedures were used to increase

the computational efficiency 27.

The undisturbed fluid velocity in the stream function is determined from an

approximate settling velocity of the aggregate in water using Stokes law. This velocity

is recalculated after each particle addition by setting the radius equal to the

hydrodynamic radius of the agglomerate. The values used to calculate the velocity in

the growth simulations are for alumina in room temperature water: Ap---3x103 kg/m 3,

g=9.8 m/s 2, and _1=10 "3 kg/m.s.

One of the principal objectives of this study was to investigate the influence of

form for the relation between Rg and the hydrodynamic radius, Rh, on the structure of

the aggregate. R h can be defined from the abbreviated Einstein-Stokes relation of the

translational diffusion coefficient Dt by

Dt = (kT)/(6r_qRh) 5)

where kT is the thermal energy 28. A colloidal aggregate consisting of a porous network

of primary particles has a hydrodynamic radius dependent on the connectivity and

distribution of these particles. The greater value of Rh; the greater the screening of the



interior.

It has been shown from theory and experimental observation that the

hydrodynamic radius may be related to the radius of gyration2e-31by

Rh = 13oRg 6)
where 13is defined as the hydrodynamic ratio. Several different relationships have

been used to approximate 1329-32. Three cases will be considered here: 13is a constant;

Kirkwood-Riseman theory applies; or the Porous-Sphere model applies.

The Kirkwood-Riseman approximation takes into account the hydrodynamic

interaction of flexible macromolecules in solution 33 and can be used to define 1319,34.

Analysis of spherically symmetric fractals indicates that the hydrodynamic radius and

radius of gyration are proportional to size of the structure and the fractal

dimension28, 3s. 13is then independent of agglomerate size, but is sensitive to fractal

dimension following

(Rh/Rg)2 = [2(2+D)(D-1)2]/[D3] 7)

in three dimensions 28. Using the fractal dimension of 2.10 from the silica aggregate

experiment the hydrodynamic ratio has a value on the order of 1.04.

The porous sphere model3S uses the Navier-Stokes equation to describe fluid

flow around a stationary structure. With this approximation 13is a function of both fractal

dimension and the size of the structure according to

Rh/Rg = [(D+2)/D] 1/2 [1-Kl/2tanh(K1/2)] [1 +3/2(K-K'3/2tanh(K1/2))] 8)

where K is given by N (D'I)/D. The expression leads to a weaker decreasing

dependence on the fractal dimension than in the Kirkwood-Riseman approximation.

Using a value of _=100, appropriate for Wiltzius' experiments 3s, and D=2.10, 13= 1.24.

Most of the simulations run in these experiments were carried out assuming 13

was a constant. The range of different values used for 13sample the range reported

from theory and experiment. It is difficult to apply the Kirkwood-Riseman model in the

form developed here since it requires a-priori knowledge of the fractal dimension

which is not available in our simulations. Some simulations were carried out using an

approximation to the porous sphere model. When data points calculated using Eqn. 8

are plotted as a function of N-particles with an arbitrary fractal dimension near 2.0, the

behavior is roughly logarithmic in that there is a rapid increase in 13followed by

asymptotic behavior. Therefore an approximation, i.e.



8 = 0.3Log(N) 9)

was used as an approximation. The constant, 0.3, was chosen to so that the

hydrodynamic ratio approaches 1.2 when N=10,000. A comparison of the predictions

of Eqn. 8 to that of Eqn. 9 for two typical values of D is shown in Fig. 5.

The model only allows particle attachment over the range of radial distances

greater than Rh and less than or equal to Rmax; Rmax is defined as the maximum radial

distance of a particle in the agglomerate from the center of mass. The growth

probability distribution in this zone, where growth is allowed, is also expected to be

strongly influenced by the choice of 13.For an N-particle aggregate the interval Rmax-R h

will depend on the spatial distribution of particles.

The numerical procedure starts with a seed of two particles in contact oriented

randomly with their combined center of mass at the coordinate origin. The undisturbed

fluid velocity is directed in the positive x direction and has an initial value of 5.44x10 .7

m/s times 8. The initial range of velocities is therefore 2.82-7.84x10 "7 m/s. Each

incoming particle is introduced upstream along a line segment parallel to the y-axis

which intersects the x-axis Xmin-3r; Xrnin iS most negative x-coordinate of a particle in

the agglomerate and r is the particle radius, 0.5/,tm. The y coordinate of the incoming

particle is randomly chosen between Ymin and Ymaxwhich are the minimum and

maximum y-coordinates of particles in the agglomerate. A streamline of constant

potential is determined from the particle's initial coordinates, the undisturbed fluid

velocity, and the hydrodynamic ratio. The incoming particle is constrained to follow this

streamline until contact, and then a new center of mass, radius of gyration, and

fluid velocity are calculated. The center of mass is shifted to the origin, and the

aggregate is randomly rotated about this point to maintain uniform growth from any

direction. The aggregate does not rotate during particle transport.

Fig. 4 depicts aggregation scheme and shows several streamlines

superimposed over an aggregate of 500 particles. The stream function at the random

release site is equal to 6.31x10 -9 m2/s. In this illustration the hydrodynamic ratio is

unity and particles can not penetrate the region bounded by the circle.

Typical simulations consisted of 10,000 particles. The radius of gyration was

calculated and stored after each particle addition. The coordinates of all particles and

the order in which they were added were also recorded.

5. Modeling Results



Typical structures generated from these simulations are shown in Figs. 6-9.

These structures were grown with hydrodynamic ratios of 0.72, 0.85, 1.0, and 1.2,

respectively. The circles superimposed on the 10,000 particle aggregates are the final

hydrodynamic radii. A total of 5 structures were grown for each of the values of 13with

the exception of 13=1.2 for which only 3 structures were grown. As is discussed in

section 6, 13=1.2 represents a marginally stable case for agglomeration.

By comparing the structures, it is evident that the degree of ramification was

dependent on 13. Increasing the hydrodynamic radius lead to more open structures

with distinct large scale branching. The size of the aggregates was interpreted using

the radius of gyration and also the maximum radius from the center of mass of a

particle in an aggregate. In Fig. 10 is a plot of the mean final radial dimensions with

respect to the hydrodynamic radius. These results indicate that increasing Rh leads to

larger structures and thus more open since the total number of particles is constant.

Between 13=0.72 and 1.0 the effect is nearly linear but deviates from linearity at 13=1.2.

The average radius of gyration of these structures was about 60-65% of the average

maximum radius.

The average number density was examined to quantify the degree of aggregate

ramification. The mean number density was evaluated at 100 randomly chosen points

within the radius of gyration for sampling areas 4 and 10/Jm in radius. The results

indicate that, as evident in Figs. 6-9, the short range number density is inversely

proportional to the final value of Rmax. In addition, the standard deviation associated

with the sampling is directly proportional to the value of 13also consistent with the

visual appearance of the agglomerates.

The average particle coordination was examined to determine the local

connectivity with nearest neighbors. The average number of nearest neighbors is

shown in Table 2. There is almost no effect of 13on the local connectivity (the single

outlier is at 13=1.2, which is nearly unstable). The coding of the run numbers in

corresponds to the initial seed for the random number generator and the value of the

hydrodynamic ratio.

Also included for comparison is an effective average coordination number for

particles within two diameters of each other. These results indicate that the structures

are not densely packed (which would yield CN=18), but it also indicates that they are

far from 1-dimensional strings (which would yield CN=4).



The fractal dimension gives an indication of the overall mass distribution of

particles within an aggregate. The fractal dimension for each structure was determined

by averaging the fractal dimension calculated from three methods: the dependence of

the radius of gyration on agglomerate size (evaluated every one hundredth particle

addition); the scaling of mass from the center of mass; and the scaling behavior of the

pair correlation function. Typical plots of these three methods are shown in Fig. 11 and

correspond to the structures shown in Fig. 6 (8---0.72). The overall average fractal

dimension was calculated for 5 aggregates for each value of P_=0.72-1.0 and over 3

aggregates with _=1.2 then averaged. The length scale over which self-similarity holds

was chosen from a visual inspection of the log-log plots to determine the appropriate

range for fitting the slope with a linear least squares fit. The fractal dimensions from the

correlation function and the point counting method were calculated from length scales

covering approximately 6-42% (Ln(r)=-12 to -10) of the maximum radius of the

structures. The fractal dimension from the radius of gyration was calculated by

excluding the initial growth of 700 particles (Ln(r)=-I 1 to approximately -9.65). In all

cases this interval tested for scaling was several decades in In(N). When calculating a

fractal dimension it was found that the value would fluctuate depending on the choice

of length scale, but the fluctuations were very small =-0.05 over the range included in

the calculation. The data points used in the calculations are indicated in bold on the

figures.

The results of the simulations are tabulated in Table 3, and indicate that 8 had

almost no effect on the value of the fractal dimension; in all cases the average was

>1.90. This value is similar to, though slightly less than, the values reported for similar

sized simulations using the simple ballistic aggregation mode136. The average fractal

dimension, <D>, was significantly lower, <D>=1.81, in the case of size dependent 13,

i.e. the approximation to the porous sphere model. A typical structure resulting from

these simulations is shown in Fig. 12 and Table 4 gives the results from 5 simulations.

The fractal dimensions of the aggregate surfaces were calculated using the

Plischke and Racz definition of the active zone 13. The average deposition distance <r'>

from the center of mass of the growing aggregate was calculated for each one

hundredth particle addition. The fractal dimension was then calculated from slope of

the log-log plot of N versus <r>. The average surface fractal dimension (<Ds>=1.97)

was similar to, though slightly greater than, the overall average fractal dimension, and



was also insensitive to the size of the hydrodynamic radius.

Figs. 13 and 14 show the location of the last 2000 particles added to the

surfaces of the agglomerates grown with I]=0.72 and 13=1.2. These figures give an

indication of the structure of the active zone. The two circles superimposed on these

figures represent the location of the hydrodynamic radius at N=8,000 particles and

N=10,000 particles, respectively.

The growth probability was examined for two structures 8=0.72 and 1.0 (runs 11

and 13). This probability was measured by releasing probe particles along the y-axis

at specified points and determining the point of contact on the aggregate from the

center of mass. After contact the particles were discarded and the aggregate was

randomly rotated about its center of mass. The points from which the particles were

released were: -1.5/.tm from the aggregate surface, and y=0.0 to 0.8 by 0.1 increments

of the maximum radius. For each of these sites (9 total) 5,000 particles were released,

and they were constrained to follow streamlines of constant potential as during growth.

These results are shown in Fig. 15 for 13=0.72 and 1.0 respectively. Distance is

normalized by the maximum radial distance from the center of mass of a particle in the

respective aggregate. With increasing release height the particles are more likely to

strike the aggregate at further radial distances from the center of mass. The mean

contact distance for each release height is also given in these figures.

6. Discussion

Modifying the ballistic growth model to include hydrodynamic screening lead to

preferential tip growth, which is clearly illustrated in Figs. 13 and 14. When the

hydrodynamic radius is much smaller than the maximum radial dimension of the

aggregate, the structures are circularly symmetric and relatively compact; nearly

indistinguishable from structures grown using the simple ballistic model. Fewer growth

sites are available as the hydrodynamic radius approaches the maximum radial

dimension of the aggregate. The only branches which will continue to grow will be the

ones that offer a substantial number of contact sites beyond the hydrodynamic radius.

The active zone in this instance is distinguished by spiked tips touching the

hydrodynamic radius. This is the principal difference between structures grown with

differing values of 8. The quantitative measures: density (within Rh); aggregate fractal

dimension; surface fractal dimension and average particle coordination number (both

within 1.1 and 2.0 diameters) are very similar in all cases. The increased standard

deviation in the mean local number density with increasing hydrodynamic screening is



a direct reflection of the larger blocks of open space encountered as 8 is increased.

One result of these experiments was to define a maximum value for 13at which

agglomerate growth is possible. It was found that growing aggregates with 8=1.2 was

dependent on the choice of the random number seed. In some instances, relatively

few particles were outside of the hydrodynamic radius. These simulations could not

maintain continued growth unless extensive computer time was allowed. In the case of

8=1.4, the maximum radius of a particle in the aggregates from the center of mass

eventually equaled the hydrodynamic radius and growth was effectively stopped after

a short time.

The preferential tip growth observed in these simulations is qualitatively

consistent with that observed experimental in two dimensional colloidal aggregation

and in DLA simulations. However, the spatial distribution is not equivalent. The higher

fractal dimensionality indicates that the density (p = ro-d) of the aggregates in these

simulations is less sensitive to agglomerate size. The observed fractal dimensions of

these structures are nearly equivalent to those observed using the simple ballistic

growth which suggests that D_d as N--,==.

The fractal dimension was significantly reduced when the hydrodynamic radius

was dependent on the aggregate size. This type of simulation produced structures with

fractal dimensions about 6% greater than in colloidal aggregation or DLA growth. The

precise nature of the scaling function between Rh and N is therefore an area worthy of

further investigation.

The expression used to relate 13to size was an approximation to the porous

sphere model. The function used, Rh/Rg= 0.3Log(N), closely followed the behavior of a

10,000 particle structure with D=1.5 although the resulting fractal dimension was

<D>=1.81. This lower fractal dimension, when compared to the other simulations, can

be explained in terms of the growth conditions as related to the radius of gyration.

Initially, the hydrodynamic radius is extremely small and a proportionately smaller

region of the interior is screened. As the agglomerate grows the hydrodynamic radius

rapidly increases and the amount of screening is increased causing the density to

drop as the size increases.

The modified ballistic simulations may provide information on the crossover

regime between DLA and ballistic growth, particularly when the drift component is

dominant but not strong enough to impose straight line trajectories into the interior of



the aggregate.
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Figure Captions

1. Schematic illustration of diffusion limited aggregation (DLA) and ballistic

aggregation (BA). In both models a succession of single particles is added to a

growing agglomerate (which is an accurate model for very dilute suspensions). The
difference between the models is the nature of the trajectory which the particle follows;

a straight line for BA and a random walk for DLA. Although the DLA schematic
illustrates a lattice based random walk, off-lattice random walks may also be used.

2. Typical results of the DLA and BA models (from ref. 4). The DLA clusters are

characteristically open and branched whereas the BA clusters are compact and

circularly symmetric.

3. Tracing of images obtained using an optical microscope to observe agglomeration

of alumina particles on the lower surface of a drop of a dilute alumina suspension. The
large unshaded figure represents a large immobile agglomerate. The direction of a

weak convection current is indicated by the arrow. Small agglomerates located with in

'bays,' such as that shaded black, were observed to exhibit only Brownian Motion,

whereas those outside the large agglomerate exhibited motion dominated by
convection.

4. Schematic snapshot during numerical modeling which illustrates the procedure

utilized in the modified ballistic aggregation process. R h is calculated for the

agglomerate using Eqn. 6 with either an assumed value for 13or one calculated with

Eqn. 9. R h for this particular simulation is given by the circle about the agglomerate

center of mass. Particles are released at a random location along a line segment up

stream from the agglomerate. Particles follow streamlines, calculated using Eqn. 4,

until contact with the agglomerate. Any particles which pass the agglomerate are
discarded.

5. Plot of the hydrodynamic ratio, either Rh/Rg or 13,as a function of the number of

particles in the agglomerate. The open symbols represent data calculated using Eqn.

8 using two different values for the fractal dimension and the crosses that calculated

using Eqn. 9.

6. Typical agglomerate calculated using the modified ballistic aggregation model and
I]=0.72.

7. Typical agglomerate calculated using the modified ballistic aggregation model and
1]=0.85.

8. Typical agglomerate calculated using the modified ballistic aggregation model and
8=I .00.

9. Typical agglomerate calculated using the modified ballistic aggregation model and



13=1.20.

10. Plot of the maximum radius (distance between the center of mass and the most

remote particle) and the radius of gyration for agglomerates of 10,000 particles as a
function of hydrodynamic ratio.

11. Typical result used in determining the fractal dimension of a particular agglomerate
grown using the modified ballistic aggregation process with 8=0.72: a) the density-
density correlation function; b) the number of particles within distance r of the
agglomerate center of mass; and c) the radius of gyration as a function of the number
of particles in the agglomerate (evaluated for during growth). In all cases the line
represents the best fit to the data points indicated by the bold symbols.

12. Typical agglomerate grown using the Eqn. 9 to calculate B. Note the striking
resemblance to the DLA agglomerate in Fig. 2.

13. Illustration of the location 2000 particles added to the agglomerate grown with
13=0.72.

13. Illustration of the location 2000 particles added to the agglomerate grown with
B=1.00.

14. Growth probability as a function of radial distance for agglomerates grown with
13=0.72 and 13=1.20. The growth probability was determined by allowing 5,000 trial
particles released randomly along a line segment upstream to strike the agglomerate
and averaging the results. No growth was allowed during these trials and the
agglomerate was randomly rotated between each trial.



TABLE 1: Fractal Dimensions from Diffusion-Limited Aggregation

and Ballistic Growth from Meakin 4 (* off-lattice, t lattice)

Space
Dimension Particle-Cluster Cluster-Cluster

Diffu_ion-LimitQd Aaareaation

2 1.71 * 1.45"

3 2.50* 1.80"

Ballistic Growth

2 2.0 *t 1.55"

3 3.0 *t 1.95"



TABLE _: Average Coordination Numbers for Singlet Aggregation

RUN CNI.1 CN/CNmax CN2.0 CN/CNmax

8=0.72 11 2.15 0.36 6.00 0.33
21 2.15 0.36 5.96 0.33
31 2.15 0.36 5.93 0.33
41 2.15 0.36 5.96 0.33
51 2.14 0.36 5.94 0.33

12 2.18 0.36 6.09 0.34
22 2.15 0.36 5.96 0.33
32 2.16 0.36 6.03 0.34
42 2.16 . 0.36 6.01 0.33
52 2.15 0.36 6.00 0.33

B=0.85

13 2.29 0.38 6.47 0.36
23 2.16 0.36 6.00 0.33
33 2.15 0.36 6.07 0.34

43 2.16 0.36 6.13 0.34
53 2.16 0.36 6.07 0.34

8=1.0

8=1.2 14 2.88 0.48 8.48 0.47
24 2.17 0.36 6.27 0.35
54 2.17 0.36 6.21 0.35

average 8=0.72 2.15 0.36 5.96 0.33
8=0.85 2.16 0.36 6.02 0.33
8=1.0 2.18 0.36 6.15 0.34
8=1.2 2.40 0.40 6.99 0.39



TABLE 3" Fractal Dimensions for Singlet Aggregation

RUN DC(r) DN(r) DRg(N) row average F_ (pm)

8=0,72 11 1.87 1.89 1.94 1.90 64.1
& 1.92 1.89 1.96 1.93 63.3

31 1.90 1.91 1.93 1,91 64.7
41 1.91 1.89 1.97 1.92 63.4
51 1.94 1.91 1.94 1.93 63.8

6=0.85 12 1.88 1o92 1.90 1.90 64.7
22 1.93 1.90 1.96 1.93 65.1
32 1.92 2.02 1.97 65.9
42 1.99 1.92 1.98 1.96 66.7

52 1.91 1.86 1.96 1.91 67.3

8=1.0 13 2.00 1.86 2.00 1.95 68.3
23 1.94 1.92 1.91 1.92 71.2
33 1.93 1.89 1.97 1.93 72.9
43 1.96 1.89 1.99 1.95 64.8
53 1.84 1.88 1.87 1.87 71.2

8=1.2 14 - 1.95 1.99 1.97 81.3
24 1.86 1.86 1.92 1.88 87.2
54 1.88 1.88 1.96 1.91 86.9

column average 1.92 1.90 1.95 1.92+0.03

column 6=0.72 1.91 1.90 1.95 1.92+0.01
average 6=0.85 1.93 1.90 1.96 1.93+0.03

for rJ=1.0 1.93 1.89 1.95 1.92+0.03
6 8=1.2 1.87 1.90 1.96 1.92+0.03



TABLE _-: Fractal Dimensions for Singlet Aggregation with the
Hydrodynamic Radius as a Function of Size

RUN DC(r) DN(r) DRg row average

1 1.89 1.84 1.82 1.85 71.3
2 1.82 1.80 1.81 1.81 74.9

3 1.81 1.85 1.77 1.81 72.4

4 1.83 1.80 1.76 1.80 73.1

5 1.79 1.82 1.74 1.78 73.4

column average 1.83 1.82 1.78 1.81__.0.02



Diffusion Limited Aggregation

- random particle placement

- random walk until contact

- fractal growth: D = 1.71 for 2-d
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incoming particle

l Ballistic Growth Model

- random particle placement

- random linear trajectory

-euclidian growth: D = 2.0 for 2-d
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1. Introduction

One definition of an agglomerate is a ensemble of particles which move as a

single flow unit. However, in many ceramic forming operations this definition breaks

down during the last stages of processing. For example, during centrifugation a

sufficiently small agglomerate may settle as a rigid body until it encounters the bottom

of the container or, in the case of slip casting, small floccs may move as flow units until

reaching the surface of the porous mold. In both of these cases, forces on the particles

may become large enough to cause restructuring of the agglomerate after contact is

made. Certainly, particle rearrangement occurs as the dimensions of the cake

increase.

As discussed below, numerical scheme was developed, based on the Verlet

Algorithm, to model the restructuring of a agglomerate under a gravitational load. This

problem is technically relevant; it is also the simplest to model since the gravitational

force on each particle is independent of the particle arrangement unlike the

hydrodynamic drag in slip casting.

The restructuring process was examined using a two dimensional simulation

with an aggregate consisting of 51 particles. This initial agglomerate was produced

using a modified ballistic aggregation model 1. Particles were added to growing

agglomerate as triplets (equilateral triangles). No rearrangement was allowed during

growth; particles of a given triplet were considered fixed as soon as contact was made

and a new triplet introduced. This aggregate, with an identical initial particle positions,

was used in all simulations and is illustrated in Fig. 1. This initial configuration

represents the time at which the lowest particle has just established contact with the

bottom of the container.

Both the particle interaction potentials and the strength of the gravitational field

were allowed to vary in the simulations. In one class of simulations all of the fifity-one



particles were allowed to move independently, i.e. attractive interactions were due to

van der Waals forces, as defined below. These simulations thus give an indication of

the type of result to be expected for soft agglomerates of nearly spherical particles. In

the second class, the particles within the seventeen original triplets interacted with a

symmetric Hooke's law, i.e. behaved as hard agglomerates bonded by solid bridges,

whereas attractive interactions between particles of different triplets were of van der

Waals type. The latter are the easiest nonspherical shape to include in these type of

simulations and have the general characteristic of all nonspherical particles, i.e.

particular orientations of two such particles will lead to stronger bonding.

In addition, each particle was subject to a constant downward force due to

gravity which varied from 0 to 1 to 100 times natural gravitation. One additional

variable was the nature of the boundary condition at the bottom of the cell. In all cases

gravitational force is removed as particles touched the bottom of the simulation cell.

For one type of boundary condition, termed 'slip,' no further constraint was applied (i.e.

particles were free to move parallel to the cell boundary) whereas the other type of

boundary, termed 'stick' the position of the particle was fixed as soon as it touched the

boundary. Any real surface will exhibit behavior in between these two limiting cases;

the former corresponds to a frictionless surface whereas the later corresponds to

infinite friction coefficient.

The interparticle potential consists of an elastic repulsive term and a

macroscopic attractive term. For the purposes of computational efficiency, the

simplified form of the Van der Waals potential was used,

Cv_w=-Ar/(12s) (1)

where Cbvdw is the interaction energy, A is the Hamaker constant (4.12x10 "2° J for non-

retarded interaction of alumina in water2), r is the particle radius, and s is the surface to

surface separation. This form is accurate for surface-surface separations much less



than the particle radius (s<<r), and always over-estimatesthe energy of the full

expression. Since the Hamaker expression predicts an infinite negative energy at

contact, an equilibrium energy 4_o is assumed. This energy is equated to the value of

the potential energy (Eqn. 1) at s=0.01 pm so that d_o=-1.72x10"19j, or about 42 times

the thermal energy kT at room temperature. Using this expression the van der Waals

force is equal to the gravitational force on a 1 pm alumina particle at s=0.29 pm for lg

and s=0.029 pm for 100g. At closer distances the van der Waals force is always larger

than the gravitational force.

The repulsive energy term used in these simulations is of the form

(_rep = (Cs2)/2 +(_o (2)

where C is a constant equal to 1.72x10-3 N/m. This value was chosen for the constant

to give a repulsive force at s=-O.01 pm (i.e. particle overlap) of the same magnitude as

the attractive force at s=+O.01 pm. The force between two particles, Fij, was evaluated

using the derivative of the sum of Eqns. 1 and 2 with respect to s, i.e.

Fij = Ar/(12Sij2 ) - Csij (3)

where s=iis the separation between the surfaces of particles i and j. The attractive term

is calculated only for s>O and the repulsive term for s<O. In calculating the attractive

term, surface separations were shifted by +O.01/Jm to allow 4> to approach d_o at

contact.

Particle motion, which allows the restructuring, is accomplished using the

velocity form of the Verlet algorithm3, 4. This algorithm is a central difference solution of

Newtons law F=ma. The equation relating position, p, at time t+At to position p, velocity

v, and acceleration, a, at time t is

p(t+At) = p(t) + v(t)&t + At2a(t)/2 (4)

and the new velocity at the same instant, t+&t, is



v(t+At) = v(t) + At [a(t)+a(t+At)]/2 (5)

where the acceleration term is calculated from a superimposition of gravitational forces

on a pairwise sum of the interparticle forces according to Eqn. 3 substituted in

Newton's law. The timestep At must be small enough for the acceleration term to be

nearly constant during At. The error is on the order of At2 for each pass through the

equations s.

The numerical stability of Verlet simulations is sensitive to particle interaction

near the energy minimum. Without proper damping forces, the kinetic energy of

particles can climb to artificially high values. The restructuring simulations are kept

stable by maintaining a nearly constant kinetic energy for the N=51 particles. The total

kinetic energy at time t is computed and compared to a constant thermal energy NkT,

where k is Boltzmann's constant and T is room temperature. The square root of this

ratio determines the magnitude of velocity scaling for time t+At. The scaling factor is

multiplied against v(t+At) to obtain an adjusted velocity in the form

v(t+At) = v(t+At)[2NkT/(m_vi(t)2)] (6)

where ]Evi(t) 2 represents the sum of the squares of all of the individual particle

velocities. Simulations assumed 1 /_m diameter alumina particles with a mass, m, of

2.09x10 -15 kg. The position and velocity data at 't' is then over written, the time counter

incremented by At, and new values for position and velocity are calculated. This

process is repeated until the desired time period has elapsed. All simulations were

conducted for a total period of 0.1 seconds using a timestep of 10 -7 seconds. Initial

particle velocities and forces were set to zero at the start of the simulations. Forces

acting on each particle were only computed for particles within 2/Jm (or particle

diameters) of the particle under consideration.



Simulation results include the initial and final positions as well as average

coordination numbers.

2. Results and Discussion

The results of the simulation are presented in two forms. The first is a graphical

images, Figs. 2-5. These figures were generated by superimposing the particle

configurations for each time step on a gray background and then subsequently

erasing it. Thus the particle paths trace out an unshaded region. The particle

configuration corresponding to the last time step is shown by the positions of the filled

circles.

The average coordination number as a function of the gravitational force,

boundary conditions, and the particle configuration are listed in Table 1. A particle was

considered to be coordinated with another when their center-center separation was

less than or equal to 1.1 times their diameter. The coordination number was evaluated

after the final time step (0.1 seconds) in all of the simulations.

The initial condition, Fig. 1, is characterized by point contacts between the

triplets. The average coordination number must be in excess of two since each particle

touches two others in the original triplets and further connections are established

during the formation of the agglomerate. The average coordination number is 2.82

which is consistent with Fig. 1 in which it is evident that most particles are three fold

coordinated, but a significant number (those around the periphery) are two fold

coordinated.

Under 0 g, the restructuring is entirely due to the attractive potential. As is

evident in Fig. 2, these structures have retained an overall structure similar to the initial

agglomerate, but have become locally more densely packed. The nature of the

boundary condition did not affect these results since the interparticle force causes all

of the particles to move toward the agglomerate center of mass and therefore the

lowest particle was drawn off of the boundary at the beginning of the simulation. Very



little difference is seen between the singlet and triplet interactions. Both appear nearly

hexagonally close packed, but the triplet interaction result in slightly more efficient

packing this is seen in the average coordination numbers (3.45 for triplets versus 3.26

for singlets) and can be visually detected in the figures (for example, in the left-hand

most arm of the agglomerates where the ten particles making up this arm appear fully

hexagonal for the triplets, but contain gaps for the singlets). It is presumed that if the

simulations were allowed to run for additional time the singlets would assume the

same configuration as the triplets. The latter achieve this local minimum in energy

more rapidly due to the stronger nature of the Hookean interaction potential.

The results of the simulations run for 1 g yield structures, see Figs. 3, which are

very similar to those from the 0 g simulations except that they have rotated about the

first contact point until they touch at a second location. In addition local rearrangement

leads the flattening of the structure immediately adjacent to the contact points. The

similarity is evident in comparing figures as well as the average coordination numbers.

In the case of singlets the average coordination number increases slightly, from 3.26 to

3.29, due the presence of gravity. In contrast the average coordination number for the

triplets decreases slightly from 3.45 to 3.41. It is believed that this results from a

disruption in the local packing efficiency in the regions adjacent to the point contacts

as the structure attempts to confirm to the flat surface. As in the 0 g case, the nature of

the boundary condition does not produce any effect on the nature of the structure

which is consistent with the fact that gravity is insufficient to break the agglomerate

structure.

At 100 g's the effect of both the boundary condition and the nature of the

particle interaction (singlets versus triplets) is very evident. Fig 4 shows the results of a

simulation assuming a stick boundary condition. For triplets the results are very similar

to the 1 g simulation. Apparently pinning the two contact points is sufficient to stabilize

the entire structure except for most right-hand arm of the agglomerate which pivots as



a rigid structure until it lays on top of the portion of the agglomerate in direct contact

with the cell boundary. In contrast, the singlets collapse to a much greater degree

leaving far less void space at the bottom of the simulation cell and no extended arms

anywhere on the structure. These results demonstrate the potentially dramatic effect of

small hard agglomerates (or more generally nonspherical particles) on restricting local

rearrangement to achieve more efficient packing under an applied load. This is also

evident in the average coordination numbers, 3.45 for stick boundary and 3.88 for the

slip boundary. The former is the same as for the triplet structure at 0g whereas the

latter is substantially greater than the values observed for singlets under either 0 or

lg.

The difference is nearly as dramatic for simulations run with the slip boundary

condition, see Fig. 5. In this case the singlets have achieved a nearly hexagonally

close packed structure with a low center of mass whereas the packing of the triplets is

far less efficient and fewer particles are in contact with the cell boundary. Again these

observations are evident in the average coordination numbers, 4.47 for singlets and

3.80 for triplets. Although the latter is significantly higher than that observed for triplets

with the stick boundary condition, a larger difference is observed between the former

and singlets with the stick boundary condition.

3. Summary

The algorithm which was developed based on a standard molecular dynamics

procedure appears to be robust and suitable for modeling the behavior of

agglomerates under settling. The results are consistent with the fact that under 0 and 1

g particle rearrangement in these small agglomerates is dominated by the interparticle

forces rather than gravity. This leads to restructuring only on a local level. The effect of

friction and particle shape are directly observable in these simulations. Under high g-

fields, the sticking condition restricted lateral movement on the bottom of the simulation

cell and lowered the final particle coordination. This effect was more pronounced with



triplets.
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Figure Captions

1. Initial configuration of particles used all simulations. This arrangement was

generated using a modified ballistic aggregation routine in which triplets of particles

(arranged in equilateral triangles) were added to the growing structure. In all of the

simulations termed "triplets" a symmetric Hooke's law potential was assumed between

particles within a given triplet and a van der Waals potential was used between

particles in different triplets. For simulations termed singlets, a van der Waals type

potential was used between all particles including those which arrived as part of the

same triplet.

2. Particle configurations after 0.1 seconds under zero gravity. The particles have

moved in response to local coordination as a result the attractive interparticle potential.

Very little difference is seen between the singlet and triplet results. Identical particle

packing is observed for both the slip and stick type boundary conditions.

3. Particle configurations after 0.1 seconds under a 1 g gravitational field. The particles

have moved in response to the local environment and, in addition, the entire structures

have rotated to establish two points of contact with the cell boundary. The type of

boundary condition does not significantly affect the packing.

4. Particle configurations after 0.1 seconds under a 100 g gravitational field assuming

a stick type boundary condition. For the triplets the structure is only modestly different

from that observed for for a 1 g load. In contrast, for the singlets a much denser

packing is observed.



5. Particle configurations after 0.1 seconds under a 100 g gravitational field assuming

a slip type boundary condition. Denser packing are observed for both triplets and

singlets. In the case of the triplets, the shape of the hard agglomerates interferes with

the local packing efficiency resulting in a more open arrangement.



TABLE 1 Average Coordination Numbers
after 100 ms

0g

Singlet Triplet

2.82 initial

[3.26] (3.26) [3.45] (3.45)

lg [3.29] (3.29) [3.41](3.41)

100 g [3.88] (4.47) [3.45] (3.80)

0 = slip boundary condition
[] = stick boundary condition
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